
LA Web Developer Guide

YRP1-508, 3-4 Hikari-no-Oka Yokosuka-Shi, Kanagawa, 239-0847, Japan
tel.: + 81-(0) 46-821-3362 | cba-japan.com

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 2

This document contains confidential information that is proprietary to CBA, Inc. No part of its
contents may be used, disclosed or conveyed to any party, in any manner whatsoever, without
prior written permission from CBA, Inc.
© Copyright 2019 CBA, Inc.

All rights reserved.

Updated: 2019-02-08

Document version: 1.64/2

Contact Information

For technical support or other queries, contact CBA Communications Support at:

customersupport@cba-japan.com

For our worldwide corporate office address, see:

http://www.cba-japan.com

mailto:customersupport@cba-japan.com
http://www.cba-japan.com/

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 3

Contents

Introduction

Integration with an Existing Application
Packaging JavaScript

Making Pages Supportable
Supporting Iframes

allowedIframeOrigins

Starting a Support Session
Session Configuration

Escalating a Call to Co-browsing

Ending a Support Session

During a Co-browsing Session
Callbacks

onConnectionEstablished

onWebcamUseAccepted

onScreenshareRequest

onInSupport

onPushRequest

Document Callbacks

Annotation Callbacks

Zoom Callbacks

Co-browsing Callbacks

Agent Callbacks

onEndSupport

onError

Allow and Disallow Co-browse for an Agent
Agent accepted into co-browse

Agent rejected from co-browse

Pausing and Resuming a Co-browsing Session

Sharing Documents

Zoom
Opening the Zoom Window

Annotations

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 4

Setting the z-index of the annotation layer

Form Filling
Excluding Elements from Co-browsing

Co-browsing Visual Indicator
Customizing the CBA Live Assist popup Window

Popup window position

WebSocket Reconnection Control
Connection Configuration

Connection Callbacks

Permissions
Agent and Element Permissions

Parent and Child Permissions

Default Permission

Dynamic Web Element Masking

Internationalization

Integrating with FCSDK

Starting a call without Voice and Video
Informing the Agent of the Correlation ID

Including a Second Agent

WebSocket Initiation

Controlling Updates to the Agent s̓ View

Consumer Session Creation
Session Token Creation

Performance Troubleshooting
Common Causes of Performance Issues

Large DOM

Large Number of Pseudo-Elements

Constantly-Mutating Elements

Analyzing Results of Performance Improvements
Screenshot Performance

Screenshot Frequency

Basic Pseudo-Element Styles

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 5

Introduction

This guide describes the Fusion Live Assist solution from a developer integration and impact
point of view. We assume that the reader is familiar with JavaScript, HTML, and CSS.

Fusion Live Assist provides voice and video calling from a consumer to an agent, along with
co-browsing, and document push by the agent, and remote control and annotation of the
consumer s̓ screen by the agent. See the CBA Live Assist Overview and Installation Guide
for details of what that means in practice.

For ease of integration and development, Fusion Live Assist uses the Fusion Client SDK for
voice and video support, while exposing a simple API for co-browsing. When developing using
the CBA Live Assist SDK, you use the Fusion Client SDK to set up the call, and the CBA Live
Assist SDK for co-browsing. You therefore need at least a basic understanding of the Fusion
Client SDK in order to develop using CBA Live Assist (see the FCSDK Developer Guide).

This Developer Guide gives information on integrating the Fusion Live Assist SDK into a Web
application, and how to use it to provide the co-browsing functions to a consumer.

References:

[1] FCSDK Developer Guide, obtained from CBA product documentation

[2] FCSDK Administration Guide, obtained from CBA product documentation

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 6

Integration with an Existing Application

The steps needed to integrate CBA Live Assist with a Web application is described in the
following sections.

On Windows, web-based applications are supported on desktop only, not tablet.

Packaging JavaScript

The CBA Live Assist JavaScript SDK is available as part of the CBA Live Assist server
component, so the web page can include the necessary JavaScript library, which loads the
SDK directly from the server. This is the recommended method.

We recommend that you do not include the contents of the
cba_live_assist_web_consumer_SDK-n.n.n.zip package in your web application, and use it as
the source of the SDK; important updates to the SDK, available on server upgrade, would not
be available to the client application without recompilation with the new packages.

Making Pages Supportable

Every page that is to allow support to start or continue must include the assist.js file from the
CBA Live Assist SDK, and have the <DOCTYPE html> declaration. Add the following lines
should to the HTML page, where <fas address> is the host name or IP address of the CBA
Live Assist server:

<DOCTYPE html>

<script src='<fas address>/assistserver/sdk/web/consumer/assist.js'/>

We suggest that you add these lines to the template for the site, if there is one.

When developing with CBA Live Assist, remember that the SDK also requires cookies and
JavaScript to be enabled in the browser.

Supporting Iframes

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 7

By default, CBA Live Assist ignores iframes within the supported page, because it is not
possible to include iframes as part of the support session without an additional
implementation step.

If you want to include iframe support, add the assist-iframe.js script to the body of the
iframe s̓ source (that is, the webpage targeted by the iframe must include the assist iframe.js
script), and initialize AssistIFrameSDK with an object containing an allowedOrigins element:

<script src='<fas address>/assistserver/sdk/web/consumer/js/assist-iframe.js'/>

AssistIFrameSDK.init({allowedOrigins: '*'});

The allowedOrigins element should be an array of origin domains, including scheme and port,
in the form scheme:host:port (for example http://127.0.0.1�8080), which is typically set to
match the origin of the page that includes the iframe. This facilitates safe communication
between the iframe and its parent. The special value “*“ (as above) specifies that the iframe
will communicate with a parent from any origin address.

CBA Live Assist supports both local-origin and cross-origin iframes, allowing agents to see
the content of iframes; however remote agent interaction with iframes is currently not
supported.

allowedIframeOrigins

Including the allowedOrigins member in the configuration object passed in to
AssistIFrameSDK.init enables the programmer to protect the iframe from rogue pages which
may attempt to embed the iframe (see the Supporting Iframes section). The similar
allowedIframeOrigins member is a list of pages which embed the iframe (acting as the
iframe s̓ parents), passed in to the configuration object when the application calls
startSupport (see the Session Configuration section). Set it either to false (to disable iframe
support in CBA Live Assist), or to an array containing either all the URLs which embed the
iframe ([‘http://192.168.0.1�8080', ‘http://www.server.net'\]), or the wildcard ([‘*‘]). The default
value (if allowedIframeOrigins is not specified) is the wildcard, which allows the iframe to be
embedded in any page.

The use of the wildcard as the default is a temporary measure to preserve backward
compatibility. In a future release it will be removed, so that in order for iframes to be co-
browse enabled, the correct origins will need to be supplied both inside the iframe and on

http://127.0.0.1:8080/

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 8

the parent page containing the iframe, using the two SDKs (AssistSDK and
AssistIframeSDK).

When explicitly setting allowedIframeOrigins to the wildcard, remember to include it as
the only element of an array.

Starting a Support Session

The application starts a support session, normally in response to the user clicking on a Help
or Request Support button, using the AssistSDK.startSupport function, passing in a
configuration object. To start a simple support session with default values, the application
only needs to specify the destination:

<a title='CBA Live Assist' onclick='AssistSDK.startSupport({destination :
"agent1"})'>Support

The above code provides a link which a user can click on for support; when a consumer clicks
the link, CBA Live Assist starts a call and co-browse session with the support agent named
agent1.

Typically, customer support services provide a queue, which is serviced by a number of
support agents. The destination parameter can also specify a queue instead of an individual
agent:

var config;
config.destination = 'customer-support';
config.videoMode = 'agentOnly';

AssistSDK.startSupport(config);

The configuration object is a JavaScript object with a number of properties which control
aspects of the session (see the Session Configuration section).

Session Configuration

The configuration object passed in to startSupport can contain the following properties:

Property Default
Value or
Behavior

Description

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 9

destination

User name of agent or agent group, if that
agent or agent group is local to the Web
Gateway; otherwise, the full SIP URI of an
agent or queue.

videoMode full

Sets whether to show video, and from
which parties. Allowed values are:
• full
• agentOnly
• none

correlationId Generated ID of the co-browsing session.

auditName
empty
string

Name to identify the consumer in event logs
(see the CBA Live Assist Overview and
Installation Guide for more details on event
logging).

url

Calculated
from src
attribute
of script
tag

Base URL of CBA Live Assist server and
FCSDK Web Gateway, including only
scheme, host name or IP address, and port
number. Include this if the
assist.jsJavaScript file included in the HTML
page with the <script> tag is on a different
host to the CBA Live Assist server.
URIs of shared documents (see the Sharing
Documents section) are also resolved
against this URL.

sdkPath

Calculated
from src
attribute
of script
tag

URL of the base directory of the consumer
SDK. As with the url property, include this if
the CBA Live Assist SDK is not on the same
server as the assist.js file.

popupCssUrl

URL of CSS stylesheet containing styles for
the CBA Live Assist popup window. This
allows you to customize the CBA Live Assist
user interface (see the Customizing the
CBA Live Assist popup Window.

popupInitialPosition Object containing values for the initial

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 10

position of the popup window on the screen
(see the Customizing the CBA Live Assist
popup Window section).

sessionToken Web Gateway session token (if required).

uui

The value set is placed in the SIP User to
User header in hex-encoded form.
The UUI can only be used when Anonymous
Consumer Access is set to trusted mode.
See the CBA Live Assist Architecture Guide
for further information. The UUI is ignored if
the session token is provided.

allowedIframeOrigins *
List of pages which will host iframes. See
the Supporting Iframes section for details.

retryIntervals
[1.0,2.0,
4.0,8.0,
16.0,32.0]

Indicates the number of automatic
reconnection attempts, and the time in
seconds between each attempt.
To disable automatic reconnection, specify
an empty array.
See the Connection Configuration section.

connectionStatusCallbacks

A set of callback functions which allow the
application to control or monitor the status
of the current connection. See the
Connection Callbacks section.

mutationBlacklist

An object containing lists of element IDs,
classes, and animations, changes to which
will not cause the agent s̓ view of the
consumer s̓ screen to update. See the
Controlling Updates to the Agent s̓ View
section.

If the configuration object does not include a sessionToken property, the CBA Live Assist SDK
automatically creates a session with the Fusion Client SDK server; that session is used for
co-browsing and the FCSDK voice and video call (if any); we expect this to be the normal
case.

If the sessionToken property is provided (for instance, if a session token is provided
separately using a bespoke security mechanism (see the Consumer Session Creation

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 11

section), or the FCSDK initiated a call which is now being escalated to co-browse (see the
Escalating a Call to Co-browsing section)), then the configuration object passed to
startSupport is used as provided, and the session identified by the session token is used for
co-browsing. You must specify any non-default values for the other properties.

If startSupport is called programmatically, it will trigger the popup blocker that is built into
most browsers; however, if it is called as a direct consequence of a user interaction (such as
pressing a button in the UI), it is not.

Escalating a Call to Co-browsing

In most cases, the application calls startSupport with an agent name, and allows CBA Live
Assist to set up a call to the agent and implicitly add CBA Live Assist support to that call.
However, there may be cases where a call to an agent already exists, and the application
needs to add CBA Live Assist support capabilities. To do this, you need to supply the session
token and a correlation ID in the configuration object which you supply to startSupport; and
the agent needs to connect to the same session. The CBA Live Assist server provides some
support for doing this.

�. The application connects to a specific URL on the CBA Live Assist server, to request a
short code (error handling omitted):

var request = new XMLHttpPRequest();
request.onreadystatechange = function() {
if (request.readyState == 4) {
if (request.status == 200) {
var shortcode = JSON.parse(request.responseText).shortCode;
start(shortcode);
}
}
}
request.open('PUT', '<fas address>/assistserver/shortcode/create', true);
request.send();

�. The application uses the short code in another call to a URL on the CBA Live Assist
server, and receives a JSON object containing a session token and a correlation ID:

var start = function(shortcode) {
var request = new XMLHttpRequest();
request.onreadystatechange = function() {
if (request.readyState == 4) {
if (request.status == 200) {

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 12

var response = JSON.parse(request.responseText);
}
}
}
}
request.open('GET', '<fas address>/assistserver/shortcode/consumer?appkey=' +
shortcode, true);
request.send();

�. The application includes those values in the configuration object and passes it to
startSupport:

var configuration;
configuration.sessionToken = response['session-token'];
configuration.correlationId = response.cid;

AssistSDK.startSupport(configuration);

More configuration can be set in the configuration object.

�. The agent uses the same short code to get a JSON object containing the session token
and correlation ID, which it can then use to connect to the same CBA Live Assist support
session (see the CBA Live Assist Agent Console Developer Guide). Informing the agent
of the short code is a matter for the application. It could be something as simple as
having it displayed on the consumer s̓ screen and having the consumer read it to the
agent on the existing call (this is how the sample application does it).

The sample application supplied with the SDK includes a JavaScript file called short-code-
assist.js, which contains a function called ShortCodeAssist.startSupport, which contains the
necessary code and takes a callback function and a configuration object:

ShortCodeAssist.startSupport(function() {
},
configuration);

The SDK calls the callback function when the support session starts successfully. You can
take this code and adjust it as you need for your own purposes.

When escalating an existing call, the destination property should not be set on the
configuration object; in this case, the destination is known implicitly from the existing call.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 13

The short code expires after 5 minutes, or when it has been used by both agent and
consumer to connect to the same session.

If you wish to define an audit name to identify the consumer in event logs (see the CBA
Live Assist Overview and Installation Guide for more details on event logging), include
an auditName parameter in the URL which creates the short code:

/assistserver/shortcode/create?auditName=consumer

Ending a Support Session

When voice and video is enabled, the user can end the session using the default UI that CBA
Live Assist adds; the application can also end the session programmatically using the
AssistSDK.endSupport function. In co-browse-only mode, CBA Live Assist does not add a
default UI, so the application must call AssistSDK.endSupport to end the support session.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 14

During a Co-browsing Session

While a co-browsing session is active (after the application has called startSupport
successfully, and before either it calls endSupport or receives the onEndSupport notification
to indicate that the agent has ended the support session), the application may:

Accept an agent into, or expel the agent from, the co-browsing session

Pause and resume the co-browsing session

Receive a document from the agent

Push a document to the agent

Receive an annotation (a piece of text or drawing to show on the device s̓ screen,
overlaid on the application s̓ view) from the agent

Have a form on its screen wholly or partly filled in by the agent

Actions which are initiated by the application (such as pushing a document to the agent)
require it to call one of the methods on the AssistSDK object.

Actions initiated by the agent (such as annotating the consumer s̓ screen) can in general be
allowed to proceed without interference from the application, as the CBA Live Assist SDK
manages them, overlaying the user s̓ screen with its own user interface where necessary.

However, the application can receive notifications of these events by defining one or more of
the callback functions on the AssistSDK object:

window.AssistSDK = {
onEndSupport: function() {
};
}

Callbacks

When it calls startSupport, the consumer application can provide callback functions to the
consumer web SDK. The SDK calls these functions to notify the application of events; the
application can respond to the events, and in some cases can tell the SDK what to do next.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 15

onConnectionEstablished

A consumer application can implement the onConnectionEstablished callback to receive
notification when an agent first joins a CBA Live Assist session. Once this has happened, the
agent may request permission to co-browse.

AssistSDK.onConnectionEstablished = function() {
console.log("Connection Established");
};

Note: By default, CBA Live Assist presents the request for permission to the user; however,
the application can override this behavior; see the onScreenshareRequest section.

onWebcamUseAccepted

When CBA Live Assist establishes a voice and video call, it prompts the consumer to allow
the application to use their webcam; the application receives this callback after the user has
given permission. You might use it to update the user interface to remove a warning message,
or to update a progress indicator:

AssistSDK.onWebcamUseAccepted = function() {
// Hide the warning
hideWebcamWarning();
};

onScreenshareRequest

The onScreenshareRequest callback notifies the application when an agent asks to co-browse
the consumer s̓ screen. It gives the application an opportunity (by returning true) to allow the
screenshare without asking the consumer (for example, there could be a flag in the
application s̓ configuration which gives permanent permission for screen sharing):

AssistSDK.onScreenshareRequest = function() {
if (screenshareAllowed) {
return true;
}
return false;
};

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 16

By default, CBA Live Assist displays a dialog box when an agent requests co-browsing,
allowing the consumer to accept or reject the co-browse.

onInSupport

The application can receive an onInSupport callback when it accepts a screenshare, and the
agent has joined the co-browse. It gives the application an opportunity to change its own UI to
reflect the fact that a co-browsing session is active, or to log events.

AssistSDK.onInSupport = function() {
// Show user extra UI as they’re in a CBA Live Assist session
showCobrowseUI();
};

onPushRequest

When the agent pushes a document to the consumer, by default CBA Live Assist displays a
dialog box, allowing the user to accept or reject the document; if they accept it, it shows the
document to the consumer. Acceptable document types are: PDF, and the image formats GIF,
PNG, and JPG/JPEG.

The application developer can override this behavior using the onPushRequest callback. The
SDK calls this function when the agent pushes a document to the consumer, before it displays
it (note that the application does not receive this callback when the agent pushes a URI). The
callback function receives two functions: an allow function and a deny function. The callback
function should call the allow function to show the pushed document to the consumer, or the
deny function to reject the pushed document:

AssistSDK.onPushRequest = function(allow, deny) {
var result = confirm("The agent wants to send you a document or image. Would you like
to view it?");
if (result)
allow();
else
deny();
}

The above function s̓ behavior is very similar to the default behavior. It shows a confirmation
prompt on the screen, and lets the user click OK or Cancel, depending on whether they want
to view the document. To always show documents without prompting:

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 17

AssistSDK.onPushRequest = function(allow, deny) {
allow();
}

Document Callbacks

By default, after it receives a document, CBA Live Assist opens a window to display the
shared document; if there is an error loading or parsing the shared document file, it displays
an error window. It does this without any interaction from the application.

If it successfully load, parses, and displays the shared document, the SDK calls the
onDocumentReceivedSuccess callback function; the function receives a sharedDocument
object (described below). If an error occurs while trying to load or parse the shared
document, it calls the onDocumentReceivedError callback function, which also receives a
sharedDocument object. The two callback functions are optional - the SDK does nothing if
you do not supply them.

The sharedDocument object that the SDK passes to the onDocumentReceivedSuccess and
onDocumentReceivedError functions contains an id property, which is a unique identifier for
the document; and may contain a metadata property, which contains additional information
about the document supplied by the agent. It also has a close method, which the application
can call to close the shared document window or error window. Additionally, the application
may add an onClosed handler to the sharedDocument object, to receive notification when the
window closes due to a user (consumer or agent) closing it from the UI.

The following code creates onDocumentReceivedSuccess and onDocumentReceivedError
callbacks, adds an onClosed handler to the sharedDocument object, and sets a timer to call
sharedDocument.close:

AssistSDK.onDocumentReceivedSuccess = function(sharedDocument) {
console.log("*** shared item opened successfully: " + sharedDocument.id);
sharedDocument.onClosed = function(actor) {
alert("Shared document window has closed by " + actor + ".");
};
console.log("Setting shared item " + sharedDocument.id + " to close in 15 secs.");
setTimeout(function() {
console.log("*** Closing shared item " + sharedDocument.id);
sharedDocument.close();
}, 15 * 1000);
};

AssistSDK.onDocumentReceivedError = function(sharedDocument) {

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 18

console.log("*** shared item opened with error: " + sharedDocument.id);
sharedDocument.onClosed = function(actor) {
alert("Shared document error window has been closed by " + actor + ".");
};
setTimeout(function() { sharedDocument.close();}, 5 * 1000);
};

The application does not receive these callbacks if the agent pushes a URI.

Annotation Callbacks

There are two callbacks that notify the application when an agent draws on a shared screen:

onAnnotationAdded(annotation, sourceName)

Called when an annotation is received from an agent. The annotation object contains the
following properties:

Property Description

stroke The color of the annotation

strokeOpacity A number between 0.0 and 1.0 indicating the opacity of the annotation

strokeWidth A number giving the width of the line of the annotation

points
An array of points representing the path of the annotation. By default,
CBA Live Assist draws a line with the color, opacity, and width,
following these points as its path.

onAnnotationsCleared()

Called when an agent clears the annotations.ons.

You can implement these callbacks to control the display and clearing of annotations, or
simply to record what the agent has sent:

AssistSDK.onAnnotationAdded = function(annotation, sourceName) {
console.log("Annotation added by " + sourceName);
};

AssistSDK.onAnnotationsCleared = function() {
console.log("Annotations cleared");
}

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 19

See the Annotations section for more details.

Zoom Callbacks

The application can receive notifications when the zoom window opens or closes (see the
Zoom section):

AssistSDK.onZoomStarted = function() {

pushDocumentButton.disabled = true;
});

AssistSDK.onZoomEnded = function() {

pushDocumentButton.disabled = false;
});

You might want to use these callbacks to update the user interface to prevent user interaction
which will not work.

The application will receive these callbacks whether the consumer or agent application opens
or closes the zoom window.

Co-browsing Callbacks

As well as using the CSS class mechanism to customize its user interface (see the
Customizing the CBA Live Assist popup Window section), there are two callback functions
which the consumer web application can implement to define what happens when co
browsing starts and ends:

AssistSDK.onCobrowseActive = function() {
// Display indicator, log, etc.
}
AssistSDK.onCobrowseInactive = function() {
// Remove indicator, log, etc.
}

If an application does not provide these callbacks, the SDK provides a default implementation,
displaying a banner at the top of the browser window, stating This page is currently being
shared.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 20

Agent Callbacks

The application can implement the following callbacks to receive notification when agents join
and leave the co-browsing session::

onAgentJoinedSession(agent)

This callback indicates that an agent has answered the support call and joined the support
session; this occurs before the agent either requests or initiates co-browsing. The callback
allows the developer to pre-approve the agent into the co-browse, before the agent makes
the request.

onAgentRequestedCobrowse(agent)

This callback notifies the developer that the agent has specifically requested to co-browse.
There is no specific requirement for the application to allow or disallow co-browsing at this
point, but it is an obvious point to do so.

onAgentJoinedCobrowse(agent)

This callback indicates when the Agent joins the co-browse session.

onAgentLeftCobrowse(agent)

This callback occurs when the agent leaves the co-browse session, and can no longer see the
consumer s̓ screen. Leaving the co-browse also resets the agent s̓ co-browse permission; the
agent may subsequently request co-browse access again.

onAgentLeftSession(agent)

This callback notifies the application that the agent has left the overall support session.

The agent parameter to all these callbacks is a JavaScript object which can be passed in to
the AssistSDK.allowCobrowseForAgent or AssistSDK.disallowCobrowseForAgent functions.
See the Allow and Disallow Co-browse for an Agent section.

These callbacks allow the developer to maintain a list of agents that are in the co-browse and
dynamically allow them in and out of the co-browsing session at any time. To do this the
developer can hold on to the agent references that they receive during the
onAgentJoinedSession callback, which will remain valid, and can then admit and eject agents
during the co-browsing session on whatever basis the application determines.

The default implementation displays a dialog box on the consumer s̓ device, asking whether
to allow co-browsing or not. If the consumer allows co-browsing, it allows any agent into the

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 21

co-browsing session whenever they request it. Implementing this interface can give the
application more control over which agents are allowed into the co-browsing session, and
when.

onEndSupport

When a CBA Live Assist session terminates (for example when the call ends, or the consumer
application calls AssistSDK.endSupport), the application can receive notification in the
onEndSupport function.

AssistSDK.onEndSupport = function() {

};

This callback provides a place for the application to reset its user interface to indicate that it is
no longer in a support session. CBA Live Assist removes its own UI automatically, so the
application only needs to restore any changes it has made itself.

onError

The application can handle error events that cause the failure of a CBA Live Assist session
using the onError callback:

AssistSDK.onError = function(error) {

}

The error object received by the callback is a JavaScript object with properties code and
message. The message property is a free-form text message. The following error codes may
be received:

Error Code Value
Received
by:

Agent

Received
by:

Consumer
Meaning

CONNECTION_
LOST

0 Yes Yes

Failed to connect after retry
count. No retry intervals
specified, will not attempt to
reconnect.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 22

PERMISSION 1 Yes Yes Received a permission change
message on a topic with no
permissions.
Error trying to leave a topic. The
message will include topic ID
and error message.

SOCKET 2 Yes Yes
Low level socket error. The
message will include the socket
error code.

CALL_FAIL 3 Yes Yes

Tried to share a document when
co-browsing is not active.
Tried to allow or disallow co-
browsing for an agent when
support is not active.

POPUP 4 No Yes Couldnʼt reconnect to popup.

SESSION_IN_
PROGRESS

5 Yes Yes
There is already a session in
use.

SESSION_
CREATION_
FAILURE

6 No Yes
Error connecting to server. The
message will include the server
URL.

Note: Not all errors can be received by both parties.

Allow and Disallow Co-browse for an Agent

You may wish to remove a specific agent from the co-browsing session. To do this, call:

AssistSDK.disallowCobrowseForAgent(agent)

passing in the agent object received in the onAgentRequestedCobrowse callback (see the
Agent Callbacks section).

If the agent is already in the co-browse session, they are removed from it; if they are not in the
co-browse session, they will not be admitted until the application calls

AssistSDK.allowCobrowseForAgent(agent);

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 23

When the application calls allowCobrowseForAgent, the specified agent joins the co-browse
immediately.

Web-specific considerations

On the web, when the consumer navigates to a new support enabled page during a support
session, the co-browse, and indeed the entire support session, is torn down and recreated on
the new page. This means that any agents will re-join the session on each page without any
permission to access the co-browse, and permission will need to be re-granted to the
appropriate agents in order for the co-browse to continue without interruption.

Agent accepted into co-browse

When an agent is accepted into the co-browse, the following occurs:

�. Consumer starts support session.

�. Agent joins session.

�. agentJoinedSession callback fired in the consumer application.

�. Agent requests co-browse.

�. agentRequestedCobrowse callback fired in the consumer application.

�. The consumer application has logic that decides the agent is allowed access to the co-
browse. This logic could be based on permissions.

�. Agent is accepted into the co-browse.

�. Agent joins the co-browse.

�. agentJoinedCobrowse callback fired in the consumer application.

��. Agent can see the consumer s̓ screen.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 24

Agent rejected from co-browse

�. Agent requests co-browse.

�. agentRequestedCobrowse callback fired in the consumer application, with the agent s̓
permissions.

�. Consumer application checks the agent permissions, and finds they do not have the
required permissions to view the current part of the application.

�. Consumer application rejects the agent s̓ request to join the co-browse, and the agent is
unable to see the consumer s̓ screen.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 25

Pausing and Resuming a Co-browsing Session

The application can temporarily pause a co-browse session with the agent by calling:

AssistSDK.pauseCobrowse();

While paused, the connection to the CBA Live Assist server remains open, but the co-browse
session is disabled, disabling annotations, document sharing, and so on as a consequence.
When the application wishes to resume the co-browsing session, it should call:

AssistSDK.resumeCobrowse();

When the application pauses a co-browse, CBA Live Assist notifies the Agent Console, which
can present a notification or message to the agent to indicate what has happened.

Sharing Documents

As well as receiving shared documents from the agent (see the onPushRequest section),
applications can use the CBA Live Assist SDK to share documents with the agent during a

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 26

co-browsing session. Acceptable document types are: PDF, and the image formats GIF, PNG,
and JPG/JPEG.

Documents shared in this way appear the same as documents pushed by the agent: PDFs are
full screen; images are in windows that can be dragged, re-sized, or moved.

Sharing a document does not actually send the document to the agent, but simply displays
the document on the local device, so that both the consumer and the agent can see and co-
browse the document.

The application shares a document by calling:

AssistSDK.shareDocument(document, onLoad, onError);

Where

document is a PDF document or image to be shared, expressed as one of the following:

A string URL pointing to the PDF document or image to share

A JavaScript file or Blob object containing the PDF document or image

onLoad is a callback function that takes no arguments, and is called when the document
is successfully loaded.

onError is a callback function that is called when an error occurs loading the document, it
is passed the following arguments:

an error code

an error message.

The error codes are the same as the agent-side error codes for document push, and may be
one of the following:

Error Code Value
Received By:
Agent

Received By:
Consumer

SHARED_DOCUMENT_ERROR_CONNECTION_ERROR 1 Yes Yes

SHARED_DOCUMENT_ERROR_HTTP_ERROR 2 Yes Yes

SHARED_DOCUMENT_ERROR_UNSUPPORTED_MIME_TYPE 3 Yes Yes

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 27

SHARED_DOCUMENT_ERROR_FILE_PARSING_ERROR 4 No Yes

SHARED_DOCUMENT_ERROR_NO_DATA_RECEIVED 5 Yes No

SHARED_DOCUMENT_ERROR_CO_BROWSE_NOT_ACTIVE 6 No Yes

Not all values are possible in either case, for example, the agent never receives error code 6,
and the consumer never receives error code 5.

The error message is a text string describing the error; it is intended for debugging and
logging, rather than for displaying to an end user.

Zoom

Either agent or consumer can open a zoom window on the consumer s̓ device. While the
zoom window is open, it displays a magnified version of the content of the consumer s̓ screen
where it is positioned.

The zoom window contains controls to change the magnification and to close the window.
Either party can use these controls, or move the window about the consumer s̓ screen by
dragging it (so the agent can move the zoom window to a part of the consumer s̓ screen they
want to look at, or the consumer can move it to a part of the screen they want the agent to
look at).

You can change the appearance of the zoom window in CSS by adding styles for the element
with ID assist-zoom-window; for example:

#assist-zoom-window {
border: 3px solid red;
}

to give the zoom window a red border for greater visibility.

Opening the Zoom Window

The application can open the zoom window by calling the AssistSDK.startZoom function:

zoom: function() {
AssistSDK.startZoom();

}

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 28

You would normally assign the zoom function to the onclick handler of a button.

There is an equivalent AssistSDK.endZoom function, but you will not normally need to call this
explicitly; normally, one of the users closes the zoom window with the its close button, and if
it is open when the CBA Live Assist session ends, CBA Live Assist closes it automatically.

Document sharing and zooming are mutually exclusive. If the zoom window is open when you
call AssistSDK.shareDocument, it has no effect (apart from logging a message to the
console). Similarly, if a shared document is open when you call AssistSDK.startZoom, it does
nothing.

Annotations

By default the CBA Live Assist SDK displays any annotations which the application receives
on an overlay, so that the consumer can see them together with their own screen. Normally an
application needs to do nothing further, but if it needs to receive notifications when an
annotation arrives or is removed, it can implement one of the annotation callbacks (see the
Annotation Callbacks section).

Setting the z-index of the annotation layer

Elements in HTML pages may have a z-index property, which specifies the order to display
them. Elements with a high z-index appear in front of elements with a lower z-index,
potentially hiding the lower z-index elements.

Some sites may have a high z-index on some elements, leading to annotations appearing
behind them. Using CSS, you can set the z-index value of the glass-pane so that it is high
enough to overlay all the elements on the page:

#glass-pane {
z-index:XXXXX !important; // Set to appropriate value
}

Legitimate values for z-index are auto, initial, inherit, or a number (negative numbers are
allowed), but if you need to set it, you will probably want to set it to a positive number in
order to bring the annotation layer to the top. The other values seem to be less useful in
this case.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 29

z-index only works on positioned elements (position:absolute, position:relative, or
position:fixed).

!important is necessary in order to override the z-index setting of other objects.

Form Filling

One of the main reasons for a consumer to ask for help, or for an agent to request a co-
browse, is to enable the agent to help the consumer to complete a form which is displayed on
their device. The agent can do this whenever a CBA Live Assist co-browse session is active,
without further intervention from the application, but there are some constraints on how forms
should be designed.

The CBA Live Assist SDK automatically detects form fields represented by input elements,
and relays these forms to the agent so that the agent can fill in values for the user. You must
provide each element with a unique label in the HTML, in one of the following ways:

providing a label for the field and including the for attribute:

<label for="otherloans_id">Other Loans: </label>
<input id="otherloans_id" type="text"/>
 - setting the title attribute of the input element:
<input type="text" title="Other Loans"/>
 - setting the name attribute of the input element:
<input type="text" name="Other Loans"/>
 - setting the id attribute of the input element:
<input type="text" id="other_loans"/>
 - setting the value attribute of the input element, *if* the input is of type radio:
<input type="radio" name="bedrooms" value="studio"/>
<input type="radio" name="bedrooms" value="one"/>
<input type="radio" name="bedrooms" value="two"/>

The SDK looks for a label to present to the user in the order above; if it does not find a <label>
element for the field, it will look for a title attribute; if it does not find a title attribute either, it
will look for a name attribute; and so on.

The SDK automatically prevents the agent from performing form fill if the type is password.

While the SDK prevents these fields from being presented to the agent as fillable form data, it
does not prevent them from being visible as part of the co-browse. You can hide them by
adding the appropriate class or permission to the element (see the Excluding Elements from
Co-browsing section).

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 30

Excluding Elements from Co-browsing

When an agent is co-browsing a form, you may not want the agent to see every control on the
form. Some may be irrelevant, and some may be private to the consumer.

To do this, add a CSS class (assist-no-show) to HTML elements, which instructs the CBA Live
Assist SDK to mask those areas:

<div id="sensitive-details" class="assist-no-show">content</div>

By default, CBA Live Assist shows excluded elements as black boxes that occupy the same
space on the page as the original element; you can specify the color of the box using the
color attribute of the special assist-no-show-agent-console CSS class in your stylesheet (the
color attribute is the only attribute of the assist-no-show-agent-console class that has any
effect). The color attribute only affects the rendering of the boxes on the agent console, and
does not affect the display of the elements on the consumer s̓ pages. For example, the
following CSS code makes elements marked with the assist-no-show class display as orange
boxes in the agent console:

.assist-no-show-agent-console {
color: orange;
}

You can make them not appear at all:

.assist-no-show-agent-console {
color: transparent;
}

For more detailed control over element visibility, see the Permissions section.

Co-browsing Visual Indicator

The SDK provides a means to customize the visual indication displayed during screen sharing.
The default implementation displays a banner at the top of the window. During screen sharing,
the main window of the application has the CSS class assist-cobrowsing (in addition to any
other CSS classes it may have). You can customize the visual indication by defining this class
in your style-sheet and adding properties to it.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 31

Customizing the CBA Live Assist popup Window

You can customize the colors, fonts, and images of the CBA Live Assist popup window by
creating a CSS file with styles for the body tag, and for elements with the #title, #logo, and
#status IDs. When you call startSupport, include the CSS file URL as the popupCssUrl
member of the configuration object:

var config = {
destination: "agent1",
popupCssUrl: "/assistsample/css/popup.css"
};

AssistSDK.startSupport(config);

To customize the background of the window, specify background attributes for the body tag:

body {
background-color: #0000FF;
background-image: url('/assistsample/img/foo.jpg');
}

To customize the CBA Live Assist logo, specify a background image for the #logo ID, along
with width and height attributes:

#logo {
background-image: url('/assistsample/img/newlogo.png');
width: 64px;
height: 64px;
}

Customize fonts by specifying font attributes for the #title and #status IDs.

Popup window position

The default position of the CBA Live Assist popup window may obscure an important part of
the consumer s̓ screen. The application can control the position of the window by including
the popupInitialPosition property in the configuration object passed to startSupport. The
value should be an object containing two properties, top and left, which control the position
(in pixels) of the popup window:

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 32

var config = {
popupInitialPosition = {
top: 200,
left: 500
},
};

AssistSDK.startSupport(config);

If you use negative numbers in for the top and left values, the CBA Live Assist popup window
appears at 0,0 on the consumer s̓ screen.

WebSocket Reconnection Control

When a co-browse session disconnects due to technical issues, the default behavior is to
attempt to reconnect six times at increasing intervals. You can control this behavior by
passing in one or both of the following when the application calls startSupport (see the
Session Configuration section):

Connection configuration

A set of callbacks for connection events, allowing an application to perform its own
reconnection handling, or to simply inform the user of the status of the current
connection

Connection Configuration

You can use the optional retryIntervals property of the connection object to control
reconnection behavior (see the Session Configuration section):

var configuration;
configuration.destination = 'agent1';
configuration.retryIntervals = [5.0,10.0,15.0];

AssistSDK.startSupport(configuration);

If the WebSocket connection to the CBA Live Assist server goes down, CBA Live Assist will
try to re-establish the connection to the server the number of times specified in the array,
with the specified time in seconds between them. In the above example, CBA Live Assist
would try to reconnect 5 seconds after the initial disconnection; then, if that fails, it would try

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 33

10 seconds after that; then, if that fails, it would try 15 seconds after that; and if that
reconnection attempt fails, it will give up and not try again.

If you do not specify retryIntervals in the connection object, CBA Live Assist will use its
default values, which are [1.0, 2.0, 4.0, 8.0, 16.0, 32.0]. If you specify an empty array, CBA Live
Assist will make no reconnection attempts.

Connection Callbacks

If the default reconnection behavior of CBA Live Assist is not what you want, even after
specifying the retry intervals, you can implement a set of connection callbacks and pass them
to CBA Live Assist in the connectionStatusCallbacks property of the configuration object:

var callbacks = {
onDisconnect: function(error, connector) {},
onConnect: function() {},
onTerminated: function(error) {},
willRetry: function(inSeconds, retryAttemptNumber, maxRetryAttempts, connector) {}
};
var config = {destination: 'agent1', connectionStatusCallbacks: callbacks};

AssistSDK.startSupport(config);

The connectionStatusCallbacks property is itself an object with the properties onDisconnect,
onConnect, onTerminated, and willRetry. These must all be functions defined in the
JavaScript.

These callbacks need to be defined and added to the configuration explicitly as above. It
is not enough to define them on the appropriate object, as it is with other callbacks.

If you do not specify retryIntervals in the configuration object, CBA Live Assist will use its
default reconnection behavior; if you specify retryIntervals , CBA Live Assist will use its
default reconnection behavior using those values. You can turn off the default
reconnection behavior, and take full control of reconnection, by specifying an empty list
for retryIntervals.

When implementing your own reconnection logic, the most important notifications you receive
are onDisconnect (called whenever the connection is lost) and willRetry (called when
automatic reconnection is occurring, and there are more reconnection attempts to come).
Both these methods include a connector object in their arguments; use the connector object
to make a reconnection attempt, or to terminate all reconnection attempts.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 34

Callback Description

onDisconnect

Called for the initial WebSocket failure, and for every failed reconnection
attempt (including the last one).
This method is called regardless of whether retryIntervals is specified
(that is, whether automatic reconnection is active or not).
The connector object allows the implementing class to control
reconnection, even if reconnection is automatic. For example, an
application might decide to give up reconnection attempts even if more
reconnection attempts would normally occur; or to try the next
reconnection attempt immediately without waiting until the next retry
interval has passed.

onConnect

Called when a reconnection attempt succeeds.
This may be useful to clear an error indication in the application UI, or
for canceling reconnection attempts if the application is managing its
own reconnections.

willRetry

Called under the following conditions:
• when the WebSocket connection is lost; or
• when a reconnection attempt fails and automatic reconnections are
occurring (retryIntervals is a non-empty array) and there are more
automatic reconnection attempts to be made.
This method is called after the onDisconnect method.
Use the connector object to override reconnection behavior. For
example, to make a reconnect attempt immediately.

onTerminated

Called under the following conditions:
• when all reconnection attempts have been made and failed, or
• when either the Connector.disconnect or the AssistSDK.endSupport
function is called.

Example - make a reconnection attempt immediately on disconnection:

In this example, the default reconnection behavior has been disabled, and the application
reconnection behavior is dependent on the reason for disconnection.

var onDisconnect = function(error, connector) {
switch(error.code) {
case -1:
connector.terminate(error);
break;

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 35

default:
connector.reconnect();
break;
}
}

Example - terminate reconnection attempts in response to user command:

In this example, the default reconnection behavior has not been disabled, but there is a UI
control which the user can press to short-circuit the reconnection attempts. If the user has
not terminated the connection attempts, automatic reconnection attempts continue.

var willRetry = function(retryInSeconds, retryAttemptNumber, maximumRetryAttempts,
connector) {
if (userHasTerminatedConnection) {
connector.terminate({code: -1, message: 'User has terminated connection'});
}
}

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 36

Permissions

You can use permissions to prevent an agent from interacting with, or even seeing, a UI
control. Whether an agent can see a particular control or not depends upon both the agent s̓
and the control element s̓ permissions.

Control element permissions

Client applications assign permission markers to UI control elements by calling the
AssistSDK.setPermissionForElement method:

var element = document.getElementById('element_id');
AssistSDK.setPermissionForElement('permission_X', element);

or by setting it on the element in the HTML as a data attribute:

<input type='button' id='id_hidden' data-assist-permission='permission_X'/>

where permission_X is the permission marker to set on the control.

Each UI element has at most one permission marker value; elements which do not have a
permission marker inherit their parent element s̓ permission marker; an element which does
not have a permission marker either assigned explicitly or inherited from its parent, is
assigned the default permission marker.

The default permission is explained further in the the Default Permission section.

Agent permissions

Agents have two sets of permissions, viewable permissions and interactive permissions.
Each set may contain an arbitrary number of values. Agents which are not assigned any
permissions have the default permission for both interactive and viewable permission sets.

CBA Live Assist grants permissions to the agent when the agent presents a Session Token
Description to the CBA Live Assist server (see the CBA Live Assist Agent Console
Developer Guide for more information about setting agent permissions, and under what
circumstances the agent can be implicitly assigned the default permission).

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 37

The application can determine an agent s̓ permissions from the agent object which it receives
in the agent callbacks (see the Agent Callbacks section). If the application needs to examine
this (for instance, to notify the consumer that a particular control will not be visible to the
agent), use the viewablePermissions and interactivePermissions properties of the agent
object. These properties are arrays of strings representing the permissions an agent has:

var permissions = agent.viewablePermissions();
var index = permissions.findIndex(function(element) {
return element == 'permission_X';
});
if (index >= 0) {

}

If the agent specifies permissions in the Session Token Description, but leaves both the
viewable set and interactive set empty, the agent will end up with no permissions, not even
the default permission.

The combination of the element s̓ and the agent s̓ permissions determines the visibility of a UI
element to an agent. A UI element is visible to a specific agent if, and only if, the agent s̓ set of
viewable permissions contains the permission marker assigned to or inherited by that
element. Similarly, an agent may interact with a UI element if and only if the agent s̓ set of
interactive permissions contains the element s̓ permission marker.

Permissions and permission markers are free-form text, which (apart from the reserved
default permission) are in the control of the application developer. CBA Live Assist will show
to the agent those, and only those, elements which the agent has permission to view; but it is
up to the application developer to ensure that each agent has the permissions they need, and
that the UI elements have corresponding permission markers assigned.

CBA Live Assist assumption: When an agent wishes to establish a co-browse, the
permissions the agent should have, as defined by the organization s̓ infrastructure, are known,
and can be translated into an equivalent set of permissions in the Session Description.

Agent and Element Permissions

Permissions are compound such that:

Permission
marker on
element

Agent
viewable

Agent
interactive

Result

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 38

permission
set

permission
set

X [“X”] [“X”]
Agent can view and interact with an
element marked with X.

X [“X”] []
Agent can view the element marked
with X but cannot interact with it.

X [] [“X”]

Agent can neither view nor interact
with the element, because it does not
have X in its viewable set. (In order to
interact with an element, and agent
must first be able to view it.)

X [] []

Element marked with X is masked or
redacted, as Agent does not have the
X permission in its viewable or
interactive set.

X [“default”] [“default”]

Element marked with X is masked or
redacted, because Agent does not
have the X permission in its viewable
or interactive set.

X [“default”] [“X”]
Agent can neither view nor interact
with the element, because it does not
have X in its viewable set.

X [“X”] [“default”]

Agent can view the element, because
it has the X permission in its viewable
set; it cannot interact with it, because
it does not have the X permission in its
interactive set.

B [“X”] [“X”]

Element marked with B is masked or
redacted, because Agent has X
permission and not B in their
permission set.

[“X”,“default”] [“X”,“default”] Agent can view and interact with the
element because they have the default
permission in their viewable and

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 39

interactive sets, and the element
implicitly has the default permission.

[“X”] [“X”]
Element is masked or redacted,
because Agent s̓ sets do not contain
the default permission

[“default”] [“default”]

Agent can view and interact with the
element, because they have the
default permission set for their
viewable and interactive set.

[] []
Element is masked or redacted,
because Agent s̓ sets do not contains
default permission

[“default”] [“X”]

Agent can see the element because
they have the default permission in
their viewable set. They cannot
interact with it because they do not
have the default permission in their
interactive set.

B [“X”] [“B”]

Element is masked or redacted
because the agent s̓ viewable set does
not contain B. The agent may not
interact with an element which they
cannot see, even though they have
the appropriate permission in their
interactive permission set.

B [“B”] [“X”]

Element is viewable, because the
agent s̓ viewable set contains B; the
element is not interactive, as the
agent s̓ interactive set does not
contain B.

An agent is granted a permission if a permission (such as A, B, or X) configured in their
Session Description matches the permission-marker of the UI element in the application.

In some circumstances an agent can be granted the default permission implicitly, but that is
not the same thing as having an empty set of permissions. In the above table, an empty set

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 40

of agent permissions means exactly that; a set of permissions containing only the default
permission may have been granted either implicitly or explicitly.

Parent and Child Permissions

An element can also inherit permissions through the UI hierarchy: UI elements that are a child
of a parent UI element inherit the permission marker of the parent, unless the child specifies a
permission marker of its own.

A child element can override its parent permission marker, but it will only be effective if the
agent s̓ viewable permission set contains the parent s̓ permission marker as well as the child s̓
(the agent must be able to see the container in order to interact with an element inside it).
This allows the developer to make a child element interactive and the parent element not. An
example use of this could be a child button within a parent container, where only the button
needs to be interactive.

Permission
marker set
on parent
element

Permission
marker set
on child
element

Agent
viewable
permission
set

Agent
interactive
permission
set

Result

A [“A”] [“A”]

Agent can view and interact
with both parent and child
element. Child inherits
permission marker A.

A A [“A”] [“A”]
Agent can view and interact
with both parent and child
element.

A B [“A”] [“A”]
Agent cannot view or
interact with child element
marked with B.

A B [“A”,“B”] [“A”]
Agent can view child
element but cannot interact
with it

A B [“A”,“B”] [“B”] Agent can view and interact
with the child element but
cannot interact with the
parent.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 41

A B [“B”] [“B”]

Agent cannot view or
interact with child or parent
element as they do not
have the parent s̓
permission marker in their
viewable permission set.
The agent may not interact
with an element which they
cannot see, even though
they have the appropriate
permission in their
interactive permission set.

[“default”] [“default”]

Agent can view and interact
with both parent and child
elements as they have the
default permission in their
viewable and interactive
permission sets, and both
parent and child elements
implicitly have the default
permission.

B [“B”] [“B”]

Agent cannot view or
interact with child element,
because the parent has an
implicit default permission
marker, and they do not
have the default permission
in their viewable permission
set. The agent may not
interact with an element
which they cannot see,
even though they have the
appropriate permission in
their interactive permission
set.

Default Permission

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 42

You do not have to assign a permission marker to every UI element which you want agents to
view or interact with; every element which does not have or inherit a permission automatically
has the default permission marker.

Elements which have the default permission marker are viewable and interactive for any agent
which has the default permission. Any agent which has the default permission includes the
reserved word default among its set of permissions (in theviewablePermissions or
interactivePermissions properties of the agent object).

Not every agent has the default permission, and an agent might have the default permission in
its viewable permissions, but not in its interactive permissions.

Dynamic Web Element Masking

You can also mask page elements that are dynamically added and removed using AJAX. To do
this, the application should call setPermissionForElementWithId, which allows the application
to add a permission to an element which does not yet exist:

AssistSDK.setPermissionForElementWithId(‘permission_X ,̓ ‘element_idʼ);

When the application calls the above method, typically when the page is loaded, CBA Live
Assist:

Checks to see if the element exists on the page:

if it does, then the element is marked with the given permission.

otherwise, it stores the combination of permission and element ID.

Listens for DOM change events, and when a new element is added:

if the element ID corresponds to one of the stored element IDs, CBA Live Assist
adds the stored permission.

The list of permission markers and element IDs is cleared when the page is refreshed, so
setPermissionForElementWithId does need to be called when the page is loaded.

The application can also call:

AssistSDK.setPermissionForElementInIframeWithId(‘permission_X ,̓ ‘elementId ,̓ iframe);

which does the same for an element within an iframe. The iframe parameter is the iframe
element itself (acquired by calling getElementById, createElement(‘iframe ,̓…), or a similar

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 43

function of the Document object).

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 44

Internationalization

The CBA Live Assist Web SDK keeps its assets in assist_assets.war. You can edit this file to
add another language:

�. Get a copy of assist_assets.war from /opt/cba/<FAS>/domain/deployment_backups (that
is, from the /domain/deployment_backups directory of your FAS installation). It will be
named assist_assets.war-<datetime>, where <datetime> is a date and time in ISO 8601
format.

�. Unzip it and open the file sdk/web/shared/locales/assistIi18n.en.json (this is the English
language file).

�. Edit the entries so that the values are in the target language.

�. Save the file in the same directory, under the name assistIi18n.<lang>.json, where <lang>
is the 2 letter language code of the target language: es for Spanish, fr for French, and so
on.

�. Re-zip the file, maintaining the original file structure, and redeploy it to the server (update
assist_assets.war with the new file – see the FAS Administration Guide).

When calling AssistSDK.startSupport, provide a locale parameter in the configuration object.
The value should be the 2 letter language code for the target language.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 45

Integrating with FCSDK

CBA Live Assist SDKs use facilities from Fusion Client SDKs, and rely on an instance of the
FCSDK being available, so all the facilities of FCSDK are available for you to use if you want.

When you call the Assist.startSupport method and provide a destination, but no correlationId
or sessionToken, in the AssistConfig, CBA Live Assist automatically starts a voice and video
call and a co-browse session with the agent, and automatically ends the call when the
application calls Assist.endSupport. If you want more control over the voice and video call
than this, you can access FCSDK objects from the global UC object:

If you called startSupport with a configuration object which does not include a session
token, it automatically requests a session token and initializes FCSDK with it. In this case,
the UC object is automatically available as a global object for you to use.

If you started a co-browse only session, there is no call under the control of the FCSDK,
so the FCSDK objects are not available.

Having obtained a UC object, you can use the facilities available from its phone object to
control the call:

var call = UC.phone.getCall(CALL_ID);

call.end();

See the FCSDK Developer Guide for details on what call control facilities are available, and
how to use them.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 46

Starting a call without Voice and Video

You can use CBA Live Assist in co-browse only mode, if the voice or video call is provided
independently of Fusion Client SDK and CBA Live Assist, or when something like a chat
session is used instead of a voice and video call.

To prevent CBA Live Assist from placing a call using the Fusion Client SDK, the application
should provide a correlation ID that CBA Live Assist uses to correlate the consumer and
agent sides of the co-browsing session. This allows an application to use the features of CBA
Live Assist (for example, co-browsing, document push, annotation, and remote control)
without voice or video.

For example, to add a link to click for support:

<a title="CBA Live Assist"
onclick="AssistSDK.startSupport({correlationId : 'your_correlation_ID'})">
CBA Live Assist

where the parameter specified is the unique ID used to correlate agent and consumer
sessions. The newly created session for co-browsing is associated with the correlation ID
which you supplied.

In a co-browse only session, the application must explicitly call endSupport when the call
ends (or when the co-browse session is no longer needed), as CBA Live Assist does not
present its default UI to the user.

The correlation ID needs to be known to both parties in the call, and needs to be unique
enough that the same correlation ID is not used by two support calls at the same time.
The application developer must decide the mechanism by which this happens, but
possible ways are for both parties to calculate a value from data about the call known to
both of them, or for one side to generate it and communicate it to the other on the
existing communication channel. There is also a REST service provided by CBA Live
Assist which will create a correlation ID and associate it with a short code; see the
Informing the Agent of the Correlation ID section.

The correlation ID needs to be known to both parties in the call, and needs to be unique
enough that the same correlation ID is not used by two support calls at the same time. The
application developer must decide the mechanism by which this happens, but possible ways
are for both parties to calculate a value from data about the call known to both of them, or

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 47

that one side calculates it and communicates it to the other. There is also a REST service
provided by CBA Live Assist which will create a correlation ID and associate it with a short
code; see the Informing the Agent of the Correlation ID section.

Informing the Agent of the Correlation ID

CBA Live Assist gives some help to the application in informing the agent of the correlation
ID; it can create a short code and associate it with the correlation ID when it creates the
session, and the client can send the short code out-of-band to the agent:

The advantage of communicating a short code, rather than communicating the correlation ID
directly, is that the short code generated by the CBA Live Assist server is guaranteed to be
both unique during the communication process, and short enough for the client to
communicate by voice (or whatever other out-of-band communication channel is in use)
without error.

The short code expires 5 minutes after creation; it should therefore be used as soon as
possible after being created.

Once a short code has been used by both agent and consumer to communicate a
correlation ID, it is discarded, and may be used by a different agent and consumer to
communicate a different correlation ID.

Including a Second Agent

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 48

There is a second scenario in which the short code REST service can be used when there is
no existing call between the two parties. If an agent is in a co-browse session with a
consumer and wishes to include a second agent in the same co-browse session, the agent
already knows the correlation ID of the CBA Live Assist session, and can use it in the initial
call to the REST service, to associate that correlation ID with a newly created short code:

The second agent application uses the short code in exactly the same way as before to
connect to the same co-browse session as the first agent and the consumer.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 49

WebSocket Initiation

To prevent getting a 302 error reported to you by a WebSocket during handshaking, ensure
that your deployment allows direct access to the WebSocket endpoint:

wss://<fas address>:<port>/assistserver/topic

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 50

Controlling Updates to the Agentʼs View

During co-browsing, CBA Live Assist observes changes in the Document Object Model on
the consumer s̓ web page, and updates the agent s̓ view if an element changes. If a page
makes frequent changes to the DOM, such as changing an element s̓ style attribute, each of
these changes causes an update to the agent s̓ view, making the agent s̓ console
unresponsive.

The code which does this may not be explicit; some JavaScript frameworks make repeated
changes to the DOM as part of their normal operation.

If you find that one or more of the elements on a page changes frequently, you can prevent it
from causing CBA Live Assist to update the agent s̓ view, by including the element in the
mutationBlacklist property of the configuration object when you call startSupport:

var config;
config.destination = 'customer-support';
config.mutationBlacklist = {elements:['mutating-element-id']};

AssistSDK.startSupport(config);

The mutationBlacklist object contains three lists:

Property Contents

elements
List of element id attributes; these elements are added to the
mutationBlacklist.

classes
List of class attributes; all elements with one of these class attributes are
added to the mutationBlacklist.

animations
List of animation-name attributes; all elements with one of these
animation-name attributes are added to the mutationBlacklist.

DOM changes (such as changing the style attribute) for elements which have been added to
the mutationBlacklist do not make the agent s̓ view update; other changes, such as scrolling
the screen (including entering data into a form element which is in the mutationBlacklist), do
make the agent s̓ view update. When the agent s̓ view does update, it includes the view of any
blacklisted elements in their state at the time of the update.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 51

A common reason to blacklist an element is if a web page has an animated logo. The agent
does not need to see the animation, and updating the agent s̓ view for each change makes
the agent console unresponsive. Add the animated element to the blacklist:

config.mutationBlacklist = {animations: [‘logo-animationʼ], classes: [‘animatedʼ] };

to prevent animation in any element which has a class attribute of animated, or an animation-
name attribute of logo-animation, from making the agent s̓ view update. The agent sees an
instantaneous snapshot of the animated element.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 52

Consumer Session Creation

A client application needs an FCSDK Web Gateway session token and a correlation ID to
establish a co-browsing session. When the application calls startSupport, CBA Live Assist
uses a built-in mechanism to create a session token for the voice and video call, and
associates it with a correlation ID for the co-browse. The built-in mechanism provides a
standalone, secure mechanism for creating a session token and a correlation ID, but the
process is not integrated with any pre-existing authentication and authorization system, and
assumes that if a client can invoke startSupport, it is permitted to do so.

If you wish to integrate your CBA Live Assist application with an existing authentication and
authorization system, you can disable the built-in mechanism (by setting the Anonymous
Consumer Access setting to disabled using the Web Administration service; see the CBA
Live Assist Overview and Installation Guide for how to do this), and replace it with a bespoke
implementation which uses the existing system to authorize and authenticate the client.

Once you have authenticated and authorized the application using the pre-existing system,
the application needs to create a session token (see the Fusion Client SDK documentation
for details of how to create the session token) and associate it with a correlation ID.

Session Token Creation

A bespoke implementation needs the following general steps:

�. Create a Web Application that can invoke the Session Token API REST Service, exposed
by the FCSDK Web Gateway.

�. Provide the appropriate Fusion Client SDK (if in use) configuration in a JSON object (the
session description).

�. Add CBA Live Assist-specific data to the session description:

AED2.metadata.role

This should be set to consumer

AED2.metadata.auditName

Optional name to use to identify the consumer in event log entries (see the CBA Live
Assist Overview and Installation Guide for details about event logging.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 53

AED2.allowedTopic

A regular expression which limits the correlation IDs which the session token can be used
to connect to. A value of .* allows the session token to be used to connect to any support
session with any correlation ID. For security reasons, we recommend that this should be
set to the value of the correlation ID which will actually be used:

{
...
"voice": {
...
},
"aed": {
"accessibleSessionIdRegex": "customer-ABCDE",
...
},
...
"additionalAttributes": {
"AED2.allowedTopic": "%s",
"AED2.metadata": {
"role": "agent",
"name": "Example Agent",
"permissions":
{ "viewable": ["test", "default"], "interactive": ["go", "text", "default"] }
}
}
...
}

�. Request a session token by sending an HTTP POST request to the Session Token API,
providing the session description in the body of the POST.

For steps 1, 2, and 4, see the FCSDK Developer Guide, Creating the Web Application.

The FCSDK Developer Guide documents both voice and aed sections - at least one of these
must be present to create the session token. However, if the session description includes a
voice section (which it must if voice and video functionality is required), then only the AED2
entries are needed for CBA Live Assist functionality. If voice and video functionality is not
needed, and there is no voice section, then there must be an aed section as well as the AED2
section entries.

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 54

Performance Troubleshooting

Common Causes of Performance Issues

Large DOM

Large Number of Pseudo-Elements

Constantly-Mutating Elements

Analyzing Results of Performance Improvements

Screenshot Performance

Screenshot Frequency

Basic Pseudo-Element Styles

Common Causes of Performance Issues

The following are the most common causes of performance issues when using CBA Live
Assist, along with some possible ways to remedy the issues.

Important: You need to fully test any of these techniques before you use them in a production
environment, to make sure that CBA Live Assist continues to render an accurate
representation of the web page in all supported browsers.

Large DOM

The CBA Live Assist screen-capturing mechanism involves analyzing each node in the
DOM, which means that larger pages take longer to process. In order for CBA Live Assist
to determine that they donʼt need to be included in the screenshot, even elements that
are invisible or off-screen need to be analyzed.

If the reason for the large DOM is that there are a lot of hidden, invisible, or off-screen
elements, you can improve the performance by telling CBA Live Assist that the elements,
and all of their children, donʼt need to be analyzed or rendered. You can achieve this by
adding the assist-screenshare-ignore CSS class to each element.

file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#common_causes
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#large_dom
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#pseudo_elements
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#mutating
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#analyze_results
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#perf
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#freq
file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#pseudo_element_styles

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 55

Example: In the following snippet, the second div and its child element are not processed. If
there is a situation where the element is moved on-screen, you can programmatically remove
the assist-screenshare-ignore class, and CBA Live Assist then renders the element as normal.

<body>
<div style="top: 20px; left: 20px">
This element is rendered by CBA Live Assist
</div>
<div class="assist-screenshare-ignore" style="top: -1000px; left: -1000px">
This element is ignored by CBA Live Assist
</div>
</body>

Large Number of Pseudo-Elements

When rendering pseudo-elements (for example, ::before or ::after), CBA Live Assist has to
analyze every CSS attribute, in case the attribute has been applied to the element. It is
often the case that a pseudo-element only has a few commonly-used styles applied (for
example, border, background, or font) and there is no reason to check for the rest. In this
case, it is possible to tell CBA Live Assist to work in basic pseudo-element rendering
mode, where it only checks for a predefined list of pseudo-element styles, rather than all
of them. This setting is applied to the configuration object that is passed into
AssistSDK.startSupport as follows:

var config = {
"destination": "agent1",
"basicPseudoElementRendering": true
};
AssistSDK.startSupport(config);

See also: The complete list of CSS attributes that form the basic pseudo-element styles. If a
web page contains pseudo-elements whose styles mostly fall within this list, but with a few
exceptions, you can specify the basicPseudoElementRendering property as an array of style
attributes to add to the list, rather than a boolean.

Example: The following configuration tells CBA Live Assist to render pseudo-elements using
the basic list, and to also include box-shadow.

var config = {
"destination": "agent1",
"basicPseudoElementRendering": ["box-shadow"]

file:///C:/GIT/la-doc/docsrc/Content/LA_WebDeveloperGuide/Performance%20Troubleshooting.htm#pseudo_element_styles

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 56

};
AssistSDK.startSupport(config);

Constantly-Mutating Elements

CBA Live Assist triggers a screenshot whenever something in the DOM changes. If there
are elements that change often, this might trigger enough screenshots to negatively
affect the usability of the page.

For example, there may be a menu where each item s̓ border color changes on mouse-over, or
a form where an input element s̓ class-list changes every time the user types a character. You
can tell CBA Live Assist to ignore these class-list changes by adding the class names to the
mutation blacklist. This prevents insignificant temporary DOM mutations from triggering
screenshots.

You can set this blacklist as part of the configuration object that is passed into
AssistSDK.startSupport as follows:

var config = {
"destination": "agent1",
"mutationBlacklist": {
"classes": ["menu-item-active", "form-element-modified"]
}
};
AssistSDK.startSupport(config);

For any class name that appears in the classes array, the addition or removal of this class
to or from any element on the page no longer triggers a screenshot. If you want to
blacklist specific elements, regardless of which attributes are changing, you can use the
elements array in the blacklist. For example, there may be an insignificant element whose
background is constantly changing, and there is no reason for the agent to see it every
time it changes. You can add the element s̓ ID to the blacklist as follows:

var config = {
"destination": "agent1",
"mutationBlacklist": {
"classes": ["menu-item-active", "form-element-modified"],
"elements": ["changing-background-el"]
}
};
AssistSDK.startSupport(config);

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 57

If there are one or more elements that are constantly being animated, you can blacklist
the animation by name, as follows:

var config = {
"destination": "agent1",
"mutationBlacklist": {
"classes": ["menu-item-active", "form-element-modified"],
"elements": ["changing-background-el"],
"animations": ["spinning-animation"]
}
};
AssistSDK.startSupport(config);

Note: The mutation blacklist doesnʼt prevent elements from appearing in the screenshot—it
just stops these DOM mutations from being the reason that a screenshot is triggered.

Analyzing Results of Performance Improvements

In order to accurately determine whether the changes have any effect, you can analyze the
messages that are output to the consumer-side browser console log.

Screenshot Performance

The first two issues mentioned above concern the time taken to perform a single
screenshot. It is possible to configure CBA Live Assist to record this by setting the trace
property as follows:

var config = {
"destination": "agent1",
"trace": true
};
AssistSDK.startSupport(config);

The timing is then printed to the console each time CBA Live Assist renders the screen,
for example:

Parsing took: 114ms
Capturing took: 123ms

Screenshot Frequency

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 58

The third issue mentioned above concerns the frequency at which CBA Live Assist
triggers screenshots. The following console message occurs each time this happens, so
it can be used to determine whether screenshots are happening too often.

Capture screen and send

Basic Pseudo-Element Styles

Attribute names ending in a hyphen are shorthand for the whole set. For example,
background- includes background-color, background-size, and background-image.

background-

border-

bottom

color

counter-

direction

display

font-

height

left

letter-spacing

line-height

margin-

opacity

padding-

position

right

© 2020 CBA | All Rights Reserved | Unauthorized use prohibited. Page 59

text-align

text-decoration

text-transform

top

transform

transform-origin

visibility

width

