

Diagnosing Media Issues on the

Fusion Platform

Version V.1.0

CaféX Communications
135 West 41st Street,

Suite 05-108,
New York,
NY 10036

www.cafex.com

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 1 of 74

http://www.cafex.com/

Version History
Document Control

Version Author Description/Change History

1.0
November 15th 2019

CaféX Support (TH) A guide to determine typical media issues
that may be seen using CaféX Fusion
Client SDK or Fusion Live Assist.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 2 of 74

Table of Contents

Introduction
Use of Third Party Tools

Streaming Traffic Overview
Stream Metrics
Video Traffic Overview
Keyframes
Delta Frames

Diagnosing Media Issues
Mandatory
Additional Logs
Other Useful Information
Architecture Overview

Call Flow
Understanding Fusion Media Broker Ports

Configuring Multiple Media Broker Ports
Example Configuration
Advanced Configuration

Understanding Media Streams
WebRTC to WebRTC Calls
WebRTC to SIP
Calling an MCU
Understanding Media Setup

STUN
DTLS
RTP & RTCP

Setting Up Wireshark for Analyzing RTP Streams
Enable Automatic Decoding of RTP Streams
Save Useful Filters
Initial PCAP Analysis
Stream Analysis has “Timestamp incorrect”
Is STUN Working?

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 3 of 74

No STUN in the pcap
The DTLS Handshake

Working DTLS Handshake
Failed DTLS Handshakes

Drawing the Call Flow Sequence
SIP Side with Wireshark (from FAS)

Advanced Packet Capture Analysis
Measuring Bandwidth
Analysis of an SIP audio stream
Stream Analysis
H.264 Codec

H.264 Profiles:
H264 Decoding
Finding the Sequence Parameter Set

Audio & Video Analysis
Measuring Retransmissions
Analyzing Streams on a Network Bridge

Picture Quality
Picture Loss Recovery
Finding PLIs
RFC2032 FIRs & SIP INFOs
NACK
RTX
Fragmentation
Adaptive Bitrate

SIP-side considerations
Finding TMMBR
Finding REMB

Analyzing Lip Sync

Captures taken from an iPAD
RVI Captures Introduce Erroneous Skew Measurements
Capture taken from a Mavericks Mac
iPAD capture shows Packet Loss on Outbound Stream

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 4 of 74

Captures from a Browser
Bandwidth Estimates

Local Firewall Configuration

Testing the Local Firewall Ports

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 5 of 74

Introduction
This document gives a very basic overview of how RTP traffic traverses a typical network
and will describe how to:

● Analyze a typical SIP call flow through Fusion Client SDK
● Understand the media paths established between FCSDK and other network

devices
● Understand common reasons for media establishment failure
● Quantify Packet Loss for a call from an iPAD Client
● Quantify Packet Loss for a call from a Chrome Browser Client
● Quantify Packet Loss at the Fusion Media Broker

Use of Third Party Tools
This document uses a number of industry standard third party tools, such as Wireshark.
It may be that the user interfaces in this document will change in these tools.
As a reader, it is more important you understand why the tools are being used and
prepare for differences in the step by step process.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 6 of 74

Streaming Traffic Overview
Here will introduce common terminology for describing all forms of Audio and Video
Streams.

Generally speaking a stream is a sequence of packetized media samples. Typically,
audio and video codecs have an associated sample rate.A codec also describes the
clock rate; which is the rate the audio was sampled.

For example:

● The G711 audio codec suggests (but does not mandate) that 20ms of audio are
transmitted per packet.

● G711 has a clock rate of 8000Hz; (eg 8000 samples per second).
● Each packet will contain 160 samples.

Note:​​ G711 doesn’t mandate 20ms of audio, so a packet may contain more of less than
160 samples; as a result the receiver must handle these variations to construct an
audible stream.

The RTP packets contain information to help the far end reconstruct the stream, below is
an example of an RTP packet:

The ​Payload ​contains the data the was sent in this packet.

The ​Sequence Number​ identifies a packet’s position in a stream. The first packet of a
stream will assign a random number and every subsequent packet will be incremented

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 7 of 74

by one. The Sequence Number’s primary objective is to identify lost packets.

The ​Timestamp​ is used to construct the sample with the correct timing. In this stream,
the previous packet had a Timestamp of: 1973995340. Thus, the receiver knows that
this sample contains 160 samples(ie: 1973995500 - 1973995340 =160). Multiple
packets in a stream will have identical Timestamps if: they have been retransmitted or
there are one of multiple packets used to create a sample (such as a video frame spread
over many packets).

Stream Metrics

Assuming a well behaved sender, generally three metrics are used to measure the
quality of the stream at the receivers end. This metrics can be used by receivers when
reconstructing streams. They are:

● Latency​​: The time it takes to get a packet from sender to receiver.
● Skew​​: If the stream is a G711 steam, one typically expects samples to be arriving

every 20ms. Skew measures cumulative lateness of a given packet relative to the
previous packet and since the start of the stream.

○ In theory, the 100th packet should arrive 2000ms from the start of the
stream; if it arrives at 2020ms and the 99th packet arrived at 1980ms, the
packet is considered 20ms late and the skew will be measured as -20ms.

○ Small amounts of skew fluctuation should be managed by a receiver.
● Jitter​​: Generally it is a measure of the “Packet Delay Variation”.

○ It is a good way of comparing one point of a given call with another.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 8 of 74

Video Traffic Overview
When a Video stream is established between two video enabled devices there are
independant RTP/UDP streams which flow in either direction between the devices. The
video stream is broken up into packets and these packets make up two fundamental
components that a video devices needs in order to construct a coherent image:

● Keyframes
● δ-frames (delta-frames)

You should remember that video codecs and compression can drastically change how
these frames are sent and received. For now, we will assume there are no Error
Correction algorithms such as: PLI or NACK which can be used to trigger a new
keyframe if required or resend a packet if it is missing. Similarly, Forward Error
correction algorithms provide information in the stream to verify and correct a stream if
something is lost.

Keyframes
A key frame is used to construct an entire image which can be displayed. It contains all
of the necessary information to render an image and is not dependant on any other parts
of the stream.

A key frame will span multiple UDP packets (depending on the resolution of the video).

Keyframes are an important way of allowing a decoder to refresh and start again if things
are going badly.

Delta Frames
δ-frames are collections of packets which only contain parts of the previous image. They
only contain information which has changed since the previous frame. A video device will
interpret these delta-frames extrapolate an image. Below is an example showing
2-keyframes (numbered 1 and 5) and 3 δ-frames (numbered: 2,3,4); the bottom of the
image shows what the video device renders.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 9 of 74

Image from: ​http://nickyguides.digital-digest.com/keyframes.htm

There are many reasons for packet-loss on a network. This could be due to: weak wifi
signals, high network contention, high network throughput and Quality of Service
guarantees implemented by networks. It must be understood that:

● If there are UDP packets lost for δ-frames then a video device will not be able to
extrapolate a coherent image until a keyframe arrives. This is displayed as a
partially corrupted or pixelated image. When a keyframe arrives it allows the video
device to render a fresh image.

● Keyframes are constructed from multiple packets; If one of these packets is lost
then the video device will not be able to render the new keyframe and will attempt
to continue extrapolating images using δ-frames until the next suitable keyframe
arrives.

Note:​​ Video is more sensitive to lost or corrupt data compared to audio, this is for a
number of reasons:

● Spoken audio is can be mostly silence, so you don’t notice
● Our eyes are very good at detect subtle changes
● Corruption is often cumulative

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 10 of 74

http://nickyguides.digital-digest.com/keyframes.htm

Diagnosing Media Issues
Diagnosing media issues has some absolute requirements which you cannot work
without. There are also nice to haves which will make life easier but are not necessary in
most situations. If you have the ​Mandatory ​​items it may not be necessary to collect the
Additional Logs​​.

Mandatory
● Understanding of the call flow and Architecture
● A Media Broker packet capture of a complete single call displaying the issue:

○ Media Broker Logs (DEBUG by default) of a single call with the issue
○ Media Broker pcap of a single call with the issue

● Calls.log from FAS (if WebRTC to SIP)

Additional Logs
● Gateway Config XML or DEBUG server.log from Gateway
● Media Broker Logs (DEBUG by default) of a working call
● Media Broker pcap of a working call
● iOS/Android console logs
● Web Console Logs
● DEBUG FAS Logs

Other Useful Information
Information such as version numbers etc, listed above, can normally be found from the
Mandatory logs. Steps to collect logs can be found in the product ​t​roubleshooting ​g​uides found
at: https://support.fusion.ca​fex.com​.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 11 of 74

Architecture Overview

All communications between WebRTC Clients and FCSDK are secure. The Media DTLS

handshake will be covered in more detail, but this prevents packet inspection; however,

some important details can be gleaned. By default SIP side transactions and media are

not encrypted, so more inspection can be performed.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 12 of 74

Call Flow

A typical scenario for FCSDK is for the FCSDK client to callout to a SIP endpoint via the

Fusion Gateway and through a PBX or contact center.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 13 of 74

The FCSDK Gateway allocates a Media Broker to direct a call when a new request is
received. Media Broker allocates a process and ports for the traversal of media. For a
given call, codec and video resolutions are fixed. Initial information about the streams
can be retrieved the transactional SDP at the start of the call.

Before initiating any detailed packet analysis, it is worth trying to understand the SDP
negotiations, so you can hypothesis, what you expect each client and the Media Broker
to be doing. This may simply be checking codecs and ports, but also understanding if
any other transactions may result in a misunderstanding of each other’s protocols.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 14 of 74

Understanding Fusion Media Broker Ports
This diagram explains what values should be specified when adding Media Broker

configuration to a FCSDK installation:

● SIP Network

○ Local Address CIDR​ - ​is the address range the Media Broker will bind to for

RTP communications on the SIP Network.

Note​​: If you have 2 network interfaces on the box don't use 'all' as the CIDR but target

the internal interface only For example X.X.X.X/32

● WebRTC Client

○ Source CIDR Address​​ - is the address range on which the Gateway will

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 15 of 74

receive WebRTC traffic from clients

Note​​: If all external traffic comes via a single ReverseProxy you can create a rule with

the ReverseProxy internal address as the Source CIDR (X.X.X.X/32) with the Public

address as the external firewall address. Then to allow internal clients to connect directly

to the Gateway you can create a 2nd rule with 'all' as the Source CIDR with the Public

address as the internal Media Broker address.

○ Public Address​​ -​ is the address the client must send RTP traffic to;

typically the front of a firewall.

○ Local Address​​ -​ is the address the Media Broker will bind to in order to

receive RTP traffic

Configuring Multiple Media Broker Ports

Media Brokers of FCSDK 2.1.31 introduces simultaneous rtp-proxy processes for

managing calls. This impacts how ports are allocated between these processes.

● SIP port Range - These ports are distributed across the rtp-proxy instances, in
groups of 4.

○ Number of SIP-Ports to allocated = (4 ports for every WEB-RTC Client per
call)x(Maximum Number of Concurrent calls on a Media Broker) + (a small
contingency [eg: 10%]).

○ Ports are not reallocated immediately when a call is ended, so on smaller
systems the contingency should be a larger percentage.

● WEB-RTC Port Range:
○ Number of WEB-RTC Ports to Allocated = (Number of rtp-proxy processes

[default is 5]).
○ It is necessary to allocate the same number of ports to each ​Source CIDR

Address ​to ensure that each rtp-proxy process can assign the correct
interface/port pair to a call.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 16 of 74

Example Configuration

Above is an example configuration for 1 Media Broker with 5 rtp-proxy processes. It is

intended to be used with Live Assist™; where a consumer's media is sent to a public IP

address, but Agent media is sent to an internal interface.

It is possible to allocate the same local port and interface (eg: 172.31.252.111:16000)

against each CIDR.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 17 of 74

Warning

When modifications to the ports are made all rtp-proxy processes will restart to acquire

their new config. This will terminate any calls in progress.

Advanced Configuration

In case of a public Internet or ISP outage, some installations require that a Media Broker
supports more than a single public Media Broker Address. This can be done by:

● Defining 2 (or more) Source Addresses for each ISP.
● Allocating disjoint sets of public addresses against each source address.

If an ISP becomes unavailable the Media Broker will stop receiving requests from the
ISP; as a result the set of public addresses will never be allocated.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 18 of 74

Understanding Media Streams
Depending on your call setup numerous media streams will be established between
clients, endpoints and the Media Broker. If you are troubleshooting, it is often worth
creating a diagram of your expectations so each stream can be identified in any packet
captures.

While the above images and notes give a good indication of a normal call setup, each
customer may have their own individual setups with small to significant differences.

The following are some common example scenarios:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 19 of 74

WebRTC to WebRTC Calls
For ​each Client ​​(WebRTC Side) you will see 8 Streams:
● One RTP stream for sending Video
● One RTP stream for receiving Video
● One RTP stream for sending Audio
● One RTP stream for receiving Audio
You will also see, on the sip side 4 Streams:
● Media Broker send itself one video stream per client (2 Streams total)
● Media Broker send itself one audio stream per client (2 Streams total)

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 20 of 74

WebRTC to SIP
For the WebRTC Client you will see 4 Streams:
● One RTP stream for sending Video
● One RTP stream for receiving Video
● One RTP stream for sending Audio
● One RTP stream for receiving Audio

For the SIP Client you will see 4 Streams:
● One RTP stream for sending Video
● One RTP stream for receiving Video
● One RTP stream for sending Audio
● One RTP stream for receiving Audio

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 21 of 74

Calling an MCU
Three way calling is not overly common but does complicate the number of streams that
will be seen.
For ​each Client ​​ (WebRTC Side) you will see 12 Streams:
● One RTP stream for sending Video
● One RTP stream for receiving Video
● One RTP stream for sending Audio
● One RTP stream for receiving Audio

You will also see, 12 streams on the sip side:
● Media Broker send the MCU one video stream per client (3 Streams total)
● Media Broker send the MCU one audio stream per client (3 Streams total)
● Media Broker receive from the MCU one video stream per client (3 Streams total)
● Media Broker receive from the MCU one audio stream per client (3 Streams total)

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 22 of 74

Understanding Media Setup
The following diagram expands on the interaction between Web-RTC clients and the
Media Broker during a call set up.

STUN Binding Requests are the first UDP messages sent between clients.

The Media Broker must be able to send UDP outbound towards all Web-RTC clients.

STUN
STUN’s primary purpose is to open paths through firewalls and authenticating source
ports. Typically, there is a request and a corresponding success response from each
client, resulting in a four packet exchange. If there is a failure at this stage, such a firewall
block, no media will establish.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 23 of 74

Once the WebRTC client has processed the answer SDP it will start sending STUN
binding request packets to the public interface port (default: 16000) on MediaBroker. One
exception is Firefox, where ICE is sent to the client for it to select a candidate.

Media Broker waits to receive a STUN request then generates a response, before
sending its STUN requests back to the client. STUN will be seen throughout the call, it is
used to check paths are media paths are still valid. They are typically send every 0.5s
from the majority of Google WebRTC clients.

Interactions with clients running the Google Chrome webRTC library behave a little
differently. Chrome clients only send a STUN request after it finishes sending a success
response to a received request. As in the previous diagram, you may see 6 packets
during the STUN setup. If you’re analyzing the STUN, the second request and response
pair from Chrome will take precedence and contain the media candidates.

Once STUN us successful the client and Media Broker can continue to establish the RTP
stream.

DTLS
Next DTLS exchanges happen in order to get keys for encrypting RTP. The client
initiating the call takes on the role of DTLS client and sends a client hello to MB, which
responds with a DTLS packet containing a server hello and a number of other details.
The client then responds with a certificate and other information, to which MB then sends
a change cipher specification and an encrypted handshake message. If there are packet
losses then lost ones are automatically resent after delays specified in the DTLS RFC.

The diagram earlier shows the format you will see the DTLS packets, any deviation from
that sequence (ignoring retransmissions) means something has gone wrong. A failure
may result in an error packet, or it may fail silently. However a failure happens it is likely
packets will continue to be resent without answer.

Often, there are two encrypted alerts sent at the end of the call, one from each side. They
can be ignored, but can be a useful way of determining when one side thinks the call has
ended.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 24 of 74

Once STUN and DTLS are complete the media can begin to flow.

RTP & RTCP
While the webRTC client is establishing a media path, the SIP client is sending RTP and
RTCP to the MB to the internal ports (default: 17000+). These packets will be discarded
by Media Broker because it could not send them to the client until the DTLS handshake
completes. Once complete, the Media Broker can start to send received media in both
directions.

For a given call leg, there are four ports allocated for SIP side media on Media Broker.
The even numbered ports being used to receive RTP audio and video, and the port one
higher for the corresponding RTCP. The Media Broker’s webrtc side only uses one port
and uses the SSRCs to distinguish the audio from the video media.

Note​​: The ports in the SDP of SIP clients are the ports a client wants to receive media
on. It can send media from a different port, though this rarely happens.

Media on the web side is encrypted, without decrypting a PCAP, only the main RTP
header is readable. For an RTCP packet, only the headers up to and including the first
SSRC header is readable. The encryption also adds 10 (RTP) or 20 (RTCP) bytes at the
end of the packet.

Note​​:Extended headers exist but you will probably never see them, but special codecs
use similar extensions for various details which will be encrypted.

When MB receives packets from the web side they are held in the Media Broker before
sending out on the SIP side in a jitter buffer. The jitter buffer’s purpose is to reduce jitter.
The buffer is initially ~300ms, but will increase if network conditions are poor, giving more
time for packets to reorder before processing and sending downstream. In passthrough
calls, packets received from the SIP have SSRCs, timestamps and sequence numbers
changed in RTP packets so the client only ever sees one continuous stream when being
transferred. The RTCP packets are effectively discarded and created within MB, although
PLIs will result in immediate creation of a PLI to send to the client.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 25 of 74

Some web client support the RED codec to send most RTP packets for the video stream
which wraps the original packet. If you need to tell what packets are inside, to determine
which codec was picked, or the content of ULPFEC, you will need to decrypt the pcap.

When either the webRTC client or the SIP side end the call, the Gateway sends an HTTP
DELETE to Media Broker, which then tears the call down down. You may see some
ICMP destination unreachable messages from one endpoint briefly, ignore these. Media
broker will respond with details of the call’s statistics. At the same time the Gateway
sends a SIP BYE or an end message to the client as necessary.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 26 of 74

Setting Up Wireshark for Analyzing RTP
Streams

Enable Automatic Decoding of RTP Streams
To reduce the amount of streams you will have to manually decode, on the toolbar go to
Analyze | Enabled Protocols…

Scroll down the list to find ​RTP ​and check ​rtp_udp​ to automatically decode RTP over
UDP

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 27 of 74

Save Useful Filters
Saving filters can save you having to manually type in useful filters each time you are
analyzing a pcap. Click the small ​+​​ on the right hand side of the filter bar:

Enter a label describing the filter, and the filter required then click OK:

You will now have a button on the right hand side of the filter bar that will automatically
apply the filter you have save

Initial PCAP Analysis
1.​​ First step is to decode the rtp streams for analysis. Open the pcap in wireshark, filter
on:

udp && !stun && !rtp && !rtcp && !icmp && !sip && !dns

This shows any UDP packets that are not stun, rtp, rtcp, icmp sip or dns.

2.​​ Now look for any packets going from or to a known Media Broker media port
(16000-16005, 17000-17099) e.g.

3.​​ Right click the packet and select ​Decode As…

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 28 of 74

4.​​ In the next window set Current to RTP and click ok

5.​​ Repeat these steps until no more packets can be seen from/to the known Media
Broker ports.
6.​​ Clear your filters by clicking the cross:

7.​​ Now go to the Telephony menu and select RTP > RTP Stream

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 29 of 74

8.​​ You will now see all of the RTP streams going to or from the Media Broker (it may be
useful to order these by Payload as below).

9.​​ The Above RTP streams show a working call, with audio and video in both directions
(4 video streams, 4 audio streams). These can be used to draw an I/O graph showing the
bitrates.

10.​​ To draw the graph go to Statistics > I/O Graph

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 30 of 74

11.​​ Remove any existing filters by selecting the filter and clicking the minus::

12. ​​On the RTP Streams window highlight one stream (you can highlight more than one
at a time so make sure!) and click prepare filter:

13. ​​Copy the filter from the main WireShark window:

14.​​ On the I/O Graph window add a new filter using the + button. Paste the copied filter
into the display filter area and set the Y Axis to Bits/s. Change the Name to an
appropriate description of the stream

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 31 of 74

Stream Analysis has “Timestamp incorrect”
It is possible to see many “Incorrect timestamp” messages when performing a Stream
Analysis on a Video Stream:

Video Streams use the “Mark” attribute to indicate when a Frame ends. In a video
stream, groups of packets with the same timestamp indicate that the packets belong to
the same Frame. In the example below there is a sequence of 3 packets with a
timestamp ​10220400 ​and the last packet has the “Mark” attribute set. It is safe to
assume that the three packets belong to the same frame.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 32 of 74

Typically, audio codecs indicate the start of a ‘audio-burst’ with a “Mark” attribute. The
last packet of the video frame is “Marked” and wireshark has assumed that this packet is
the beginning of an audio-burst. Wireshark assumes that the timestamp is incorrect
because the last packet has the same timestamp; it is not possible to start a new
audio-burst with a previously used timestamp.

Essentially, these warnings can be ignored on video streams.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 33 of 74

Is STUN Working?

No STUN = No Media

If STUN is working correctly this rules out an issue with the media path on the WebRTC
side. This can be checked inside the pcap. To start open the pcap file and set the filer to
stun

For each WebRTC Client you should then see the following:

Where more than one WebRTC Client is being used you may need to be more specific
with filtering, by setting the source and destination port specific to each client:

stun && (udp.srcport == 58150 || udp.dstport == 58150)
Where 51850 is the udp port of the current client

No STUN in the pcap
A failed STUN setup may return no results, in this case either:

1. Media Broker has not received the STUN Request
2. Media Broker is not listening for STUN Requests

To resolve this you will need to ensure that

1. Media broker service is started and listening correctly
2. The Media Broker configuration is correct, specifically the Public and Local

IPs/Ports
3. Firewalls on the media path have the correct ports opened and forwarding

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 34 of 74

4. A local firewall is not preventing communication (​See​​: Local Firewall

Configuration)
5. selinux is disabled

Important: ​​Media Broker needs to send outbound STUN towards web clients.
See: ​Testing the Local Firewall Ports

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 35 of 74

The DTLS Handshake
As part of setting up the media paths there is a DTLS handshake. If this DTLS
Handshake fails, for whatever reason, media on the WebRTC side will not work. To
check this open the pcap file and set the filer to ​dtls

Where more than one WebRTC Client is being used you may need to be more specific
with filtering, by setting the source and destination port specific to each client, e.g.

dtls && (udp.srcport == 58150 || udp.dstport == 58150)
Note:​​Where 51850 is the udp port of the current client

Working DTLS Handshake
An example of a working DTLS handshake is:

Failed DTLS Handshakes
Examples of a failed DTLS handshake are below. This particular failure was seen, when
a very old version of FCSDK was used with a newer browsers (Chrome 56+, FF 51+).

Or you may see the handshake enter a loop:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 36 of 74

Drawing the Call Flow Sequence
Drawing out the call flow sequence can be useful when analysing complicated calls. In
the call flow you can record the relevant pieces of the SIP message and SDP.

SIP Side with Wireshark (from FAS)
The SIP call flow must be taken from the FAS. The Media Broker pcaps do not contain
SIP messages. However single box installs will contain both RTP and SIP dialogs.
Open the pcap in wireshark and decode all the rtp streams.
Then on the toolbar select ​Telephony | Sip Flows:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 37 of 74

You will need to find the correct call. Complete calls that were ended will show a state of
COMPLETED:

Highlight the appropriate call then click ​Flow Sequence​ in the bottom right corner:

This will draw the complete call flow as seen from FAS.
The image below is taken from a single box install so shows both SIP messages and the
RTP streams, note that the SIP messages are between 192.168.9.18 (FAS) and
10.10.10.30 (a PBX).
Note:

● You cannot see what PBX has sent to a SIP client side from here.
● Nor can you see the SDP sent to the webRTC client

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 38 of 74

As most installs are not single box you will need to click the relevant SIP message, this
will move wireshark’s display to the correct packet, where you can view the SIP SDP
(SIP INVITE in the case below:

When you are more familiar with the call flow, you can read the inbound Offers and
Answers reading the Media Broker sdp.log

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 39 of 74

Advanced Packet Capture Analysis

Measuring Bandwidth
Currently, the easiest way to measure actual Bandwidth usage is to use Wireshark’s ​IO
Graph​​ which can be found under ​Statistics​.

1) Find the appropriate Filter for a stream:

2) Copy the Filter from the Main Wireshark window:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 40 of 74

3) Paste the Filter into the IO Graph and set the Y Axis to ​Bits per Second

We can see the stream is running at approximately 500kbits​-1

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 41 of 74

Analysis of an SIP audio stream

The audio from Media Broker to the SIP phone is not encrypted and can be heard using
wireshark’s RTP Player, by Selecting the appropriate Stream and pressing ​Analyze​ then
selecting ​Player​. The stream needs to be decoded, for now select a large Jitter Buffer
(200ms).

The Stream is clearly disrupted with sequence errors from 36s onwards.

Stream Analysis
Wireshark provides some Stream Analysis, which is helpful for audio diagnosis.

In this example, wireshark shows clumping on the inbound g711 stream. Bursts of

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 42 of 74

inbound packets arrive in large groups and later than expected:

G711 packets should arrive every 20ms. The Delta is the time between packets and the
example above shows that 18301 to 18313 have all arrived at the same time at packet
18300 which recorded a Delta of 154ms. Also, the skew is large, this indicates that the
audio packet has arrived ~180-290ms late, relative to their expected packet arrival time.

As a comparison, the inbound stream from the SIP phone; which is considered good;
has a consistent 20ms Delta, a Jitter value of almost 0 and a Skew of only 3ms.

H.264 Codec

The first keyframe contains will typically contain the Sequence Parameter Set which
contains information common to all the pictures in the H264 stream.
This will contain information like the H.264 profile being used that should match the SDP
negotiation:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 43 of 74

H.264 Profiles:

profile-level-id define the properties of the incoming H.264 stream. It indicates the
profile level the decoder must comply to in order to decode the incoming NAL unit
stream.

It is a Base16 representation of 3 bytes in the SPS of NAL unit.
1 byte - profile_idc
1 byte - profile_iop
1 byte - level_idc

for example, profile-level-id=42E015 imply
profile_idc = 42 imply Baseline profile
profile_iop = E0 imply only common subset of profile is supported
level_idc = 15 imply level 2.1

In general, profile-level-id and packetization-mode identify the media format
configuration for H.264

See RFC 3984 Section 8.1 for details

Check ​http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels​ for more details on
specific levels.
The SPS can be used to verify what an H264 stream contains:
https://cardinalpeak.com/blog/the-h-264-sequence-parameter-set/

H264 Decoding
If you know an unencrypted/decrypted stream is H264, but wireshark isn't showing it as
such, go to preferences->protocols->h264 and set the payload type to the one for the
h264 stream. If multiple are needed then it can take a comma separated list (no spaces).

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 44 of 74

http://en.wikipedia.org/wiki/H.264/MPEG-4_AVC#Levels
https://cardinalpeak.com/blog/the-h-264-sequence-parameter-set/

Finding the Sequence Parameter Set

Audio & Video Analysis
Typically all the packets that create a frame are sent around the same time, so the deltas
in video streams are not comparable to those of audio streams.

1) Select the Stream to Analyze and Prepare a Filter
2) Alter the filter to only include Marked Packets - append: ​&& rtp.marker==true
3) Apply the filter
4) Save the Displayed Packets as a CSV and Open in Excel (or equivalent).

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 45 of 74

5) Add a New Column “Frame Deltas”
6) The Delta is equal to the Difference in Time*1000 from the previous packet and the
current packet
7) This can be used to identify unusual ‘frame’ behaviour.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 46 of 74

You can perform similar analysis with audio streams.

Generally, this helps us determine how well behaved a stream is; areas with high-deltas
help indicate where in the call problems are occurring. Reasons for high-deltas may
include:

Areas of High Packet Loss
Queued traffic in the network
Delayed Packets in the network

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 47 of 74

Measuring Retransmissions
It is often useful to separate retransmissions from the original stream.

This is a many step process:

1. Take an appropriate capture - in this example we’ve taken it from Media Broker
2. Separate the Stream using an appropriate filter
3. Perform Stream Analysis:
4. Save the Stream as a CSV

5. Open the Steam in Excel:
6. Create a New Column for Identifying Wrong Sequence Number:

a. Something like this: ​=IF(I3="Wrong sequence nr.",A3,"")
b. A Better way is to look for recurring sequence numbers:

=IF(ISNA(VLOOKUP(B3,B2:B2,1,FALSE)=B3),A3,"")
7. Have a Column for creating the appropriate filter:

a. Something like : ​=IF(M3="","",CONCATENATE("frame.number==",M3))

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 48 of 74

b. or: use ISNA if #N/A comes up

8. Have a Column that concatenates a big filter:
a. Something like: ​=IF(N3="",O2,CONCATENATE(O2,"||",N3))

9. Copy the Filter in Wireshark, it should look like:

||frame.number==61||frame.number==62||frame.number==63||frame.number==64
……

a. You’ll need to remove the first || and the last character
10.Now you can use wireshark’s filter to differentiate between the original stream and

retransmissions:

This graph shows the results from a wireshark of an isolated video stream:

● Original stream in black
● Transmissions in red
● Total in Green

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 49 of 74

Double Packets
When a tcpdump is performed using the ​-i any​ option the capture is taken above the
interface layer. We have seen some capture taken at Media Broker that contain
duplicates for packets being sent by Media Brother. These should have only been
targeted at a single interface, but at the level the capture is taken the packet is presented
to both interfaces.

Duplicate packets can disrupt analysis, but they can be removed using the following
wireshark utility:

editcap -d orig.pcap noDups.pcap

Analyzing Streams on a Network Bridge

In this example zeroshell is being used to limit bandwidth across as a network bridge.
This section is not a tutorial for setting up Zeroshell or capturing packets from the
zeroshell machine. Instead, it contains some useful wireshark filters for determining
which interface packets are flowing through on the transparent network bridge.

On the bridge each packet is displayed twice: on the way in, and on the way out.
Assuming that a capture on any-interface was performed; they can be distinguished by
the “Linux cooked capture information”.

The following filters can be used:

Filter Packets

(sll.pkttype==3) Unicast to another host

(sll.pkttype==4) Sent by us

These can be used to filter an srrc stream in the capture:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 50 of 74

We can see above that Zero Shell has flattened or limited the bandwidth available.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 51 of 74

Picture Quality

Picture Loss Recovery

When a video steam cannot be rendered a new keyframe is required. These are
requested by a client in a number of ways:

● PLIs,
● RFC2032 FIRs
● SIP INFO.

 PLIs are the only mechanism on the web side, so MB injects PLIs into a stream when it
receives FIRs or INFOs. Media Broker can translate between PLIs and FIRs on the SIP
side meaning any FIRs going to MB are sent as PLIs to the web client and any PLIs sent
by the web client will be translated to FIRs on the SIP side.

PLIs can be found in the RTCP stream:

If you want to filter, auto-completion can help to write a wireshark filter for sub-types:

rtcp.psfb.fmt==1

rtcp is the packet type, psfb for payload specific feedback which is the section type for
PLIs, and fmt is the feedback message type).

The corresponding RTP stream will hopefully contain a keyframe shortly afterwards.
The filter: ​ h264.nal_unit_hdr​ can help you find them:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 52 of 74

Finding PLIs
This filter will help find PLIs and was useful in diagnosing an issue with ICMP errors:

icmp || sip || rtcp.rtpfb.fmt

The Screenshot shows:

● The call finishes setting up at 14:00:13 with receipt on an ACK.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 53 of 74

● There is a PLI at 14:00:21 - Marked with Payload Specific
● The first ICMP event happens at 14:00:32.

This was caused by a third party application crashing on receipt of a PLI.

RFC2032 FIRs & SIP INFOs
If PLIs do not appear to be working and you can't find any PLIs coming from a SIP device
it may be it uses RFC2032 FIRs and SIP INFOs (also known as PFUs or FPUs). SIP
INFOs received by FAS will normally result in the web client sending a keyframe as MB
translates them to PLIs in that direction, and FCSDK can be configured to have FAS
send SIP INFOs when the web client sends a PLI.

In this example we can see lots of PLIs going from Media Broker to a SIP phone, but
none in the other direction; INFOs are being received however. Often the INFOs will
repeat until the phone gets a keyframe, but this device appears not to do that.

Looking at the DTLS, we can see the INFOs came in to the gateway, prior to the web
client finishes establishing its media path. Unlike standard RTCP these are sent on the
RTP ports and are effectively an RTCP packet containing just the FIR. With newer
versions of Wireshark it seems mostly it will automatically decode them as RTCP, but it
can't be relied upon, so there are two ways to filter for them.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 54 of 74

Note:
If you want to check if PLIs or FIRs have raced in before the DTLS exchange has
completed and not repeated then you can create a filter that shows dtls or video
RTP/RTCP ports with rtcp packets.

dtls || ((udp.port==17020 || udp.port=17021) && rtcp)

NACK
When packet loss occurs in the video stream on the WebRTC leg of a call the main
recovery method used is Negative ACKnowledgement, a.k.a NACK. This is request for
retransmission of some RTP packets sent via a section in an RTCP packet, which should
result in the other end resending them if it still has a copy. If too much packet loss occurs,
NACKs will not always be used, instead PLIs will be sent and old data given up on, or if
the round trip time is high (over 50ms) the stream will switch on ULPFEC which will result
in far fewer, if any, NACKs being sent.

As a result of encryption on the web side, any packet capture where you need to confirm
which NACKs are present in RTCP will need to be decrypted. It is possible to tell if
retransmissions of the requested RTP packets happens without decrypting, and if RTX is
not used then you can simply look at the sequence numbers to see which; however,
when RTX is used you will still need to decrypt to find out which are being resent.

RTX
Modern webRTC clients, support RTX, where NACKs are not simple retransmissions.
You can tell if this is in use as both the offer and answer on the web side will include the
RTX codec, and have two SSRCs for the video media line which share the same MSID.

When in use responses to NACKs will be sent with the payload type for RTX and using a
separate set of sequence number; to tell the sequence number it was sent for you need
to look at the first two bytes of the payload. The extra sequence number is a special
feature of RTX packets that is removed once processing of it is done, so you will not see
it on the SIP side.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 55 of 74

Note​​: RTX appears multiple times with different payload types in more recent versions of
Chrome, you may see it in its FMTP attribute, but only one will be used and if there are
multiple in both the offer and answer negotiations the RTX will be the one for RED.

Fragmentation
UDP packets that are fragmented are not understood by any web clients, but if a packets
comes from the SIP side that is at or above the maximum MTU of the network for the
path between Media Broker and the FCSDK client then it will get fragmented as
encryption adds a few bytes to the packet.
To check quickly if fragmentation is present in a capture use the filter:
ip.flags.mf ==1 or ip.frag_offset gt 0.
If this results in "Fragmented IP Protocol" frames being show for a stream then
fragmentation will be a problem.

Adaptive Bitrate
Video endpoints distributed over the internet cannot guarantee a stable bitrate required
for real time communications. It is important that the stream of packets which construct a
video call arrive at their destination in a timely fashion; depending on the network
pathway between an client and Media Broker, network buffering or QoS restrictions may
limit or severely impact video performance.

Media Broker implements REMB (for WEB-RTC Clients) and TMMBR (for SIP Clients)
specifications so that Media Broker can monitor the RTCP Reports and react to the ever
changing environment clients may face.

These protocols will request more or less bandwidth from clients if the network conditions
change. If there is no change the protocol will maintain the current bitrate.

Media Broker allows the administrator to configure constraints on the bandwidth to
maintain video quality parameters can be met by the business requirement.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 56 of 74

In its current implementation Media Broker does not support Dynamic Video Resolution
Changes; this means if a call is established at 720HD this resolution will be maintained
throughout the call.

The ​Maximum​ and ​Minimum Adaptive Bitrate ​values, give bounds to the threshold that
the Media Broker will go to when rendering video

This value effects Media Broker in two ways:

1. Media Broker will request no-more or less than these value from Clients.
2. Media Broker will not use a value outside of this range to encode video. Media

Broker will ensure that the Video it generates is of an appropriate quality and not
render a 720HD video with insufficient bitrate, nor render video with an
inappropriately high bitrate with a diminished return.

The ​Initial Adaptive Bitrate​ value is used by Media Broker when sending video at the
beginning of a call before there is enough data collected from the RTCP to behave
appropriately.

In most consumer cases it is appropriate to set this value equal to the ​Minimum Adaptive
Bitrate​; if the network is sufficient the bitrate of the call will improve shortly after the call
starts; however, some video solutions may prefer the video starts at a higher bitrate, in
which case clients on an insufficient networks will have a worse experience until the
bitrate falls.

The following diagram demonstrates how data is received at a client with an actual
physical bandwidth which is capped at 350kbps. Such a consumer will never be able to
receive more than 350kbps due to a limitation in their network capabilities.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 57 of 74

The graphs on the left hand side show what the user's experience will be when the ​Initial
Value ​is around 512kbps (more than the client's maximum). The graphs on the right
hand side show what happens for this user when the Initial value is set to 300kbps
(below the client's minimum).
The graph on the left shows the user will receive a poor video experience for the first few
seconds of the call (and data may be lost); the user will see degraded video and audio
may be effected.

The graph on the right shows the user's maximum bandwidth is reached very quickly and
there is very little interruption to the user's experience.

SIP-side considerations
In solutions where clients are establishing video calls to traditional SIP-based video
devices, such as deskphones, soft-UAs or MCUs the Media Broker can utilize the
network architecture for a better video experience.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 58 of 74

If SIP-endpoints are based in a dedicated network the Media Broker can apply a
fixed-bitrate to a video negotiation. This is advantageous because typically dedicated
video-networks can guarantee the network stability required for communications and thus
both endpoints can agree an optimal bitrate when the call is established.
The value of the fixed bitrate can be found in the Media Broker's ​proxy.properties​ file.
The property is ​sip.bitrate.override.main=4000000​. This will set an AS parameter equal
to 4mbps in the SDP sent in requests on the SIP side.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 59 of 74

Finding TMMBR
In wireshark TMMBR appears inside a ​Generic RTP Feedback​ block of the RTCP:

Finding REMB
This is a lot harder to see in a wireshark, because the RTCP packets are encrypted. You
can see a close approximation of what is being sent by Media broker when it is received
at your client, if you are using Chrome. This will be covered in the Browser topic when
looking at bandwidth estimates.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 60 of 74

Analyzing Lip Sync
Once the audio and video RTP streams leave the sender, they are independent of each
other and it’s the job of the decoder to cope for any fluctuations caused by network
conditions when reconstituting the streams.

Lip Sync issues can be seen if the audio and video streams are vastly apart from each
other and clients should be using the RTCP to keep packets in sync.

The RTCP sender report contains information that the decoder can use to keep packets
in sync:

Example Audio RTCP Sender Report:

Example Video RTCP Sender Report:

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 61 of 74

In both cases the Sender Report contains an RTP timestamp and a ‘wall clock’ time.
Each RTP packet contains its own RTP timestamp, with all this information the receiver
can use this information to playback the audio and video streams relative to one another.
It’s not so straightforward though, as the decoder will be making assumptions on the
sender’s clock drift, clock skew to resynchronize the steams. Essentially, there are 3
ways of synchronizing the streams:

● Add silence
● Just ahead (remove excess)
● Alter playback feed of other stream to speed one up or slow one down

Neither of these things are instantaneous as the decoder needs to take time to sample
enough data to detect a suitable bound.

Identifying a lip synchronization issue based on the packet arrival time is not trivial.
Components like the Jitter Buffers may add delay allowing the encoder to keep the
streams in synch.

You can calculate the relative ‘wall time’ for a given RTP packet by using its RTP
timestamp and the RTP timestamp with the ‘Wall Time’ from a RTCP sender-report as a
reference point. Comparing this time against the received time can provide latency for a
given packet.
Performing these calculations for both the audio and video streams will allow you to
compare how far apart the given streams may be arriving.

Codecs like G711 use a fixed sample rate, meaning each packet contains 160 samples
at 8000MHz, or 20ms of audio. So it’s quite easy to determine if the RTP Time stamp is
ahead or behind it’s expected arrival time.

Codecs with variable sample rates (like video) can be harder to estimate without the
negotiated clock speeds; however, you can estimate it.

The follow table are values taken from RTCP packets

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 62 of 74

We can see that a data of RTP timestamps equal to 1800 takes approximately 20ms and
that’s consistent, you can use this as a clock rate. You can estimate the expected arrival
time for an RTP packet by:

1. calculating the difference between the RTP packet’s timestamp and the last
received RTCP packet’s timestamp

2. Using the clock rate determine the number of ms since the RTCP packet arrived
3. Add this time to the wall clock time of the RTCP packet

With this information you can:

● Compare this value with the actual arrival time
● Compare the delay against another stream

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 63 of 74

Captures taken from an iPAD

In order to measure the packet loss of the RTP stream from the Fusion Media Broker to a
Fusion Enabled iOS Application the iPAD will need to be connected to a Macintosh with
wireshark installed. The following commands are taken from The Mac Developer Library
(​https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_ref/doc/uid/DTS
10001707-CH1-SECRVI​) and they describe how the mac can be used used listen to
wireless network traffic received by the ipad:

rvictl -s IPAD_UUID

Where IPAD_UUID is the ​Identifier​ for the IPAD, which can be obtained from XCode’s
Organizer view:

1. Taking a Capture using RVI
Using Wireshark there is now an additional Interface that can be monitored. Make a call
using the IPAD and allow the Call to establish and run for a few minutes, before stopping
the capture and processing the results.

This capture will determine how much packet loss there is from the Fusion Media Broker
to the Ipad. This is because the UDP packets will either be missing or out of sequence.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 64 of 74

https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_ref/doc/uid/DTS10001707-CH1-SECRVI
https://developer.apple.com/library/mac/qa/qa1176/_index.html#//apple_ref/doc/uid/DTS10001707-CH1-SECRVI

2. Filtering Traffic
There will be four UDP streams in this capture: two inbound video and audio streams
from the Fusion Media Broker to the ipad and another two outbound streams from the
ipad to the Fusion Media Broker. It is necessary to hunt for a packet that is suspected to
be from the video stream.

Apply the following filter: ​udp && !rtp

The Ipad will send to Destination Port: 16000, so it is likely that the first two packets
belongs to the outbound stream. The third packet is likely to belong to the inbound
stream.

3. Encoding the UDP Stream
Right Click a UDP packet from the Fusion Media Broker and Select: ​Decode As

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 65 of 74

Select RTP and press Apply. Wireshark will now interpret the UDP stream as a full RTP
stream. It should be noted that in this case a G.711 audio-packet was selected, but
wireshark has also distinguished between inbound and outbound audio and video
streams:

4. Analyze the Stream
Now that the streams have been formatted Select: ​Telephony->RTP->Show All Streams

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 66 of 74

The following will be displayed:

Here it can be seen that the inbound and outbound video and audio streams. In this
example 37% of packets were lost on the inbound stream to the ipad.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 67 of 74

RVI Captures Introduce Erroneous Skew Measurements
It must be remembered that the capture being taken using the RVI is not at the IPAD but
the Mac which it is tethered to. We have witnessed significant discrepancies in timings
values taken using the RVI when compared to a network router. Notably the skew values
can be seconds out within a few minutes. It is preferable to capture IPAD traces at a wifi
access point or network router.

Capture taken from a Mavericks Mac
Wireshark cannot understand the packets captured from Mavericks because Apple chose
to use an unknown packet format. This can be resolved by Opening ​Edit​→ ​Preferences
then ​Protocols-->DLT_USER​ and editing the Encapsulations Table to add the following
Entry:

DLT = User 2 (DLT=149)
Payload Protocol = eth
Header Size = 108
Header Protocol = <leave blank>
Trailer Size = 0
Trailer Protocol = <leave blank>

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 68 of 74

iPAD capture shows Packet Loss on Outbound Stream
The capture used previously shows a 5.3% packet loss for the outbound stream. It is not
possible to measure outbound UDP packet loss (because the protocol is connectionless).

This implies that there was packet loss between the IPAD and the MAC performing the
packet capture! It is suspected this could be related to CPU load on the MAC but it
implies that this could skew results because there could be similar levels of inbound
packet loss.

Capturing at the local network’s router has shown some packets appear as Comfort
Noise initiating from the iPAD; this seems related to the wireshark decoding.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 69 of 74

Captures from a Browser

The analysis of the wireshark capture is identical to the previous section and will not be
covered again. In addition, Chrome has some additional metrics which can be used:

When a call is active point the Chrome Browser to:

chrome://webrtc-internals/

When a call is active you can view the number of dropped packets:

Web-rtc-internals-parameters from TestRTC, is a good tutorial for understanding the
metrics in webrtc-internals:
https://testrtc.com/webrtc-internals-parameters/

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 70 of 74

Bandwidth Estimates
From webrtc-internals the bandwidth estimates can tell you how the adaptive bitrate is
behaving.

A video encoder has to make a lot of calculations based on how it perceives the network
conditions and how the receiver is reporting theirs.
The following attributes are present:

● googAvailableReceiveBandwidth
○ the bandwidth that is available for receiving video data

● googAvailableSendBandwidth
○ the bandwidth that is available for sending video data

● googTargetEncBitrate
○ the target bitrate of the the video encoder, it will try and fill the available

bandwidth

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 71 of 74

Local Firewall Configuration
The local firewall configuration for Media broker must allow inbound UDP packets and
initial outbound UDP packets for the media to establish.

The following is a sample setup for configuring the ​firewalld ​service to allow inbound
traffic:

1. Install Firewalld:
​yum install firewalld

2. Add an interface to a public zone:
​sudo firewall-cmd --zone=public --permanent

--change-interface=eno16777984

3. This can also be set in:
vi /etc/sysconfig/network-scripts/ifcfg-eno16777984 ​​ZONE=public

4. Configure the Media Broker XML script:
​vi /etc/firewalld/services/csdk-mb.xml

<?xml version="1.0" encoding="utf-8"?>

<service>

 <short>MB</short>

<description>Service Description for Media Broker Service</description>

 <port protocol="udp" port="16000"/>

 <port protocol="udp" port="17000-17999"/>

 <port protocol="tcp" port="8092"/>

</service>

5. Reload to see new services:
​sudo firewall-cmd --reload

6. Apply Services to Zones:
sudo firewall-cmd --zone=public --permanent --add-service=csdk-mb

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 72 of 74

Testing the Local Firewall Ports
You can test if packets can be sent from a public network through to the Media Broker by
using a packet sending tool.

Tools like ​Packet Sender​ (​https://packetsender.com​) allow you to craft UDP packets and
direct them to an IP and Port.

Using ​tcpdump​ on the Media Broker port you can listen for inbound traffic and determine
if your sent packets arrive.

The following filter can be used to only show UDP packets arriving at port 16000:

tcpdump -i any udp port 16000

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 73 of 74

https://packetsender.com/

A very simply way of sending UDP traffic from the Media Broker machine is to use the
following command, specifying the destination address:
echo "This is my data" > /dev/udp/{{DESTINATION ADDRESS}}/3000

Obviously, the destination address will need to be publicly routable, so if your test
machine is behind a NAT, this technique will not work. Suitable knowledge of your
network’s routing rules are required. It may be easier to verify simply the inbound and
outbound STUN by establishing a call.

Document Title: Diagnosing Media Issues on the Fusion Platform Classification PUBLIC

 Page 74 of 74

