
Live Assist

Web Developer Guide

Version 1.62



This document contains confidential information that is proprietary to CaféX Communications Inc. No

part of its contents may be used, disclosed or conveyed to any party, in any manner whatsoever, without

prior written permission from CaféX Communications Inc.

© Copyright 2018 CaféX Communications Inc.

All rights reserved.

Updated: 2018-06-18

Document version: 1.62/1

Contact Information

For technical support or other queries, contact CaféX Communications Support at:

support@cafex.com

For our worldwide corporate office address, see:

http://www.cafex.com

© 2018 CaféX | Confidential Page 2



Contents

Introduction 6

Integration with an Existing Application 7

Packaging JavaScript 7

Making Pages Supportable 7

Supporting Iframes 7

allowedIframeOrigins 8

Starting a Support Session 9

Session Configuration 9

Escalating a Call to Co-browsing 13

Ending a Support Session 15

During a Co-browsing Session 16

Callbacks 16

onConnectionEstablished 17

onWebcamUseAccepted 17

onScreenshareRequest 17

onInSupport 18

onPushRequest 18

Document Callbacks 19

Annotation Callbacks 20

Zoom Callbacks 21

Co-browsing Callbacks 21

Agent Callbacks 21

onEndSupport 23

onError 23

© 2018 CaféX | Confidential Page 3



Allow and Disallow Co-browse for an Agent 24

Agent accepted into co-browse 25

Agent rejected from co-browse 26

Pausing and Resuming a Co-browsing Session 27

Sharing Documents 27

Zoom 29

Opening the Zoom Window 29

Annotations 30

Setting the z-index of the annotation layer 30

Form Filling 30

Excluding Elements from Co-browsing 31

Co-browsing Visual Indicator 32

Customizing the Live Assist popup Window 32

Popup window position 33

WebSocket Reconnection Control 33

Connection Configuration 34

Connection Callbacks 34

Permissions 38

Agent and Element Permissions 40

Parent and Child Permissions 42

Default Permission 44

Dynamic Web Element Masking 44

Internationalization 46

Integrating with FCSDK 47

© 2018 CaféX | Confidential Page 4



Starting a call without Voice and Video 48

Informing the Agent of the Correlation ID 49

Including a Second Agent 50

WebSocket Initiation 51

Controlling Updates to the Agent's View 52

Consumer Session Creation 54

Session Token Creation 54

© 2018 CaféX | Confidential Page 5



Introduction

This guide describes the Fusion Live Assist solution from a developer integration and impact point of

view. We assume that the reader is familiar with JavaScript, HTML, and CSS.

Fusion Live Assist provides voice and video calling from a consumer to an agent, along with co-brows-

ing, and document push by the agent, and remote control and annotation of the consumer's screen by the

agent. See the Live Assist Overview and Installation Guide for details of what that means in practice.

For ease of integration and development, Fusion Live Assist uses the Fusion Client SDK for voice and

video support, while exposing a simple API for co-browsing. When developing using the Live Assist SDK,

you use the Fusion Client SDK to set up the call, and the Live Assist SDK for co-browsing. You therefore

need at least a basic understanding of the Fusion Client SDK in order to develop using Live Assist (see

the FCSDK Developer Guide).

This Developer Guide gives information on integrating the Fusion Live Assist SDK into a Web applic-

ation, and how to use it to provide the co-browsing functions to a consumer.

References:

[1] FCSDK Developer Guide, obtained from CaféX product documentation

[2] FCSDK Administration Guide, obtained from CaféX product documentation

© 2018 CaféX | Confidential Page 6



Integration with an Existing Application

The steps needed to integrate Live Assist with a Web application is described in the following sections.

Note: On Windows, web-based applications are supported on desktop only, not tablet.

Packaging JavaScript

The Live Assist JavaScript SDK is available as part of the Live Assist server component, so the web

page can include the necessary JavaScript library, which loads the SDK directly from the server. This is

the recommended method.

We recommend that you do not include the contents of the cafex_live_assist_web_consumer_SDK-

n.n.n.zip package in your web application, and use it as the source of the SDK; important updates to the

SDK, available on server upgrade, would not be available to the client application without recompilation

with the new packages.

Making Pages Supportable

Every page that is to allow support to start or continue must include the assist.js file from the Live

Assist SDK, and have the <DOCTYPE html> declaration. Add the following lines should to the HTML

page, where <fas address> is the host name or IP address of the Live Assist server:

<DOCTYPE html>

...

<script src='<fas address>/assistserver/sdk/web/consumer/assist.js'/>

...

We suggest that you add these lines to the template for the site, if there is one.

Note: When developing with Live Assist, remember that the SDK also requires cookies and JavaScript to

be enabled in the browser.

Supporting Iframes

By default, Live Assist ignores iframes within the supported page, because it is not possible to include

iframes as part of the support session without an additional implementation step.

© 2018 CaféX | Confidential Page 7



If you want to include iframe support, add the assist-iframe.js script to the body of the iframe’s source

(that is, the webpage targeted by the iframe must include the assist iframe.js script), and initialize

AssistIFrameSDK with an object containing an allowedOrigins element:

<script src='<fas address>/assistserver/sdk/web/consumer/js/assist-
iframe.js'/>

...

AssistIFrameSDK.init({allowedOrigins: '*'});

...

The allowedOrigins element should be an array of origin domains, including scheme and port, in the

form scheme:host:port (for example http://127.0.0.1:8080), which is typically set to match the ori-

gin of the page that includes the iframe. This facilitates safe communication between the iframe and its par-

ent. The special value "*" (as above) specifies that the iframe will communicate with a parent from any

origin address.

Live Assist supports both local-origin and cross-origin iframes, allowing agents to see the content of

iframes; however remote agent interaction with iframes is currently not supported.

allowedIframeOrigins

Including the allowedOrigins member in the configuration object passed in to

AssistIFrameSDK.init enables the programmer to protect the iframe from rogue pages which may

attempt to embed the iframe (see the Supporting Iframes section on the previous page). The similar

allowedIframeOrigins member is a list of pages which embed the iframe (acting as the iframe's par-

ents), passed in to the configuration object when the application calls startSupport (see the Session

Configuration section on the next page). Set it either to false (to disable iframe support in Live

Assist), or to an array containing either all the URLs which embed the iframe

(['http://192.168.0.1:8080', 'http://www.server.net']), or the wildcard (['*']). The

default value (if allowedIframeOrigins is not specified) is the wildcard, which allows the iframe to be

embedded in any page.

Note:

n The use of the wildcard as the default is a temporary measure to preserve backward compatibility. In

a future release it will be removed, so that in order for iframes to be co-browse enabled, the correct

origins will need to be supplied both inside the iframe and on the parent page containing the iframe,

using the two SDKs (AssistSDK and AssistIframeSDK).

© 2018 CaféX | Confidential Page 8



n When explicitly setting allowedIframeOrigins to the wildcard, remember to include it as the

only element of an array.

Starting a Support Session

The application starts a support session, normally in response to the user clicking on a Help or Request

Support button, using the AssistSDK.startSupport function, passing in a configuration object. To

start a simple support session with default values, the application only needs to specify the destination:

<a title='Live Assist' onclick='AssistSDK.startSupport({destination :
"agent1"})'>Support</a>

The above code provides a link which a user can click on for support; when a consumer clicks the link,

Live Assist starts a call and co-browse session with the support agent named agent1.

Typically, customer support services provide a queue, which is serviced by a number of support agents.

The destination parameter can also specify a queue instead of an individual agent:

var config;

config.destination = 'customer-support';

config.videoMode = 'agentOnly';

...

AssistSDK.startSupport(config);

The configuration object is a JavaScript object with a number of properties which control aspects of the

session (see the Session Configuration section below).

Session Configuration

The configuration object passed in to startSupport can contain the following properties:

Property

Default

Value or

Behavior

Description

destination User name of agent or agent group, if that agent or

agent group is local to the Web Gateway;

otherwise, the full SIP URI of an agent or queue.

© 2018 CaféX | Confidential Page 9



Property

Default

Value or

Behavior

Description

videoMode full Sets whether to show video, and from which

parties. Allowed values are:

n full

n agentOnly

n none

correlationId Generated ID of the co-browsing session.

auditName empty string Name to identify the consumer in event logs (see the

Live Assist Overview and Installation Guide for

more details on event logging).

url Calculated

from src

attribute of

script tag

Base URL of Live Assist server and FCSDKWeb

Gateway, including only scheme, host name or IP

address, and port number. Include this if the

assist.jsJavaScript file included in the HTML

page with the <script> tag is on a different host

to the Live Assist server.

URIs of shared documents (see the Sharing

Documents section on page 27) are also

resolved against this URL.

sdkPath Calculated

from src

attribute of

script tag

URL of the base directory of the consumer SDK. As

with the url property, include this if the Live

Assist SDK is not on the same server as the

assist.js file.

© 2018 CaféX | Confidential Page 10



Property

Default

Value or

Behavior

Description

popupCssUrl URL of CSS stylesheet containing styles for the

Live Assist popup window. This allows you to

customize the Live Assist user interface (see the

Customizing the Live Assist popup Window

section on page 32).

popupInitialPosition Object containing values for the initial position of

the popup window on the screen (see the

Customizing the Live Assist popup Window

section on page 32).

sessionToken Web Gateway session token (if required).

uui The value set is placed in the SIP User to User

header in hex-encoded form.

Note: The UUI can only be used when

Anonymous Consumer Access is set to

trusted mode. See the Live Assist Architecture

Guide for further information. The UUI is ignored

if the session token is provided.

allowedIframeOrigins * List of pages which will host iframes. See the

Supporting Iframes section on page 7 for

details.

© 2018 CaféX | Confidential Page 11



Property

Default

Value or

Behavior

Description

retryIntervals [1.0,2.0,

4.0,8.0,

16.0,32.0]

Indicates the number of automatic reconnection

attempts, and the time in seconds between each

attempt.

To disable automatic reconnection, specify an

empty array.

See the Connection Configuration section on

page 34.

connectionStatusCallbacks A set of callback functions which allow the

application to control or monitor the status of the

current connection. See the Connection Callbacks

section on page 34.

mutationBlacklist An object containing lists of element IDs, classes,

and animations, changes to which will not cause

the agent's view of the consumer's screen to update.

See the Controlling Updates to the Agent's

View section on page 52.

Note: If the configuration object does not include a sessionToken property, the Live Assist SDK auto-

matically creates a session with the Fusion Client SDK server; that session is used for co-browsing and

the FCSDK voice and video call (if any); we expect this to be the normal case.

If the sessionToken property is provided (for instance, if a session token is provided separately using a

bespoke security mechanism (see the Consumer Session Creation section on page 54), or the FCSDK

initiated a call which is now being escalated to co-browse (see the Escalating a Call to Co-browsing sec-

tion on the next page)), then the configuration object passed to startSupport is used as provided, and

the session identified by the session token is used for co-browsing. You must specify any non-default val-

ues for the other properties.

© 2018 CaféX | Confidential Page 12



Note: If startSupport is called programmatically, it will trigger the popup blocker that is built into most

browsers; however, if it is called as a direct consequence of a user interaction (such as pressing a button in

the UI), it is not.

Escalating a Call to Co-browsing

In most cases, the application calls startSupport with an agent name, and allows Live Assist to set up

a call to the agent and implicitly add Live Assist support to that call. However, there may be cases where a

call to an agent already exists, and the application needs to add Live Assist support capabilities. To do

this, you need to supply the session token and a correlation ID in the configuration object which you sup-

ply to startSupport; and the agent needs to connect to the same session. The Live Assist server

provides some support for doing this.

1. The application connects to a specific URL on the Live Assist server, to request a short code (error

handling omitted):

var request = new XMLHttpPRequest();

request.onreadystatechange = function() {

if (request.readyState == 4) {

if (request.status == 200) {

var shortcode = JSON.parse(request.responseText).shortCode;

start(shortcode);

}

}

}

request.open('PUT', '<fas address>/assistserver/shortcode/create',
true);

request.send();

2. The application uses the short code in another call to a URL on the Live Assist server, and receives a

JSON object containing a session token and a correlation ID:

var start = function(shortcode) {

var request = new XMLHttpRequest();

request.onreadystatechange = function() {

if (request.readyState == 4) {

if (request.status == 200) {

var response = JSON.parse(request.responseText);

...

}

}

© 2018 CaféX | Confidential Page 13



}

}

request.open('GET', '<fas
address>/assistserver/shortcode/consumer?appkey=' + shortcode, true);

request.send();

3. The application includes those values in the configuration object and passes it to startSupport:

var configuration;

configuration.sessionToken = response['session-token'];

configuration.correlationId = response.cid;

...

AssistSDK.startSupport(configuration);

More configuration can be set in the configuration object.

4. The agent uses the same short code to get a JSON object containing the session token and correlation

ID, which it can then use to connect to the same Live Assist support session (see the Live Assist

Agent Console Developer Guide). Informing the agent of the short code is a matter for the applic-

ation. It could be something as simple as having it displayed on the consumer's screen and having the

consumer read it to the agent on the existing call (this is how the sample application does it).

The sample application supplied with the SDK includes a JavaScript file called short-code-assist.js,

which contains a function called ShortCodeAssist.startSupport, which contains the necessary code

and takes a callback function and a configuration object:

ShortCodeAssist.startSupport(function() {

...

},

configuration);

The SDK calls the callback function when the support session starts successfully. You can take this code

and adjust it as you need for your own purposes.

Note:

n When escalating an existing call, the destination property should not be set on the configuration

object; in this case, the destination is known implicitly from the existing call.

n The short code expires after 5 minutes, or when it has been used by both agent and consumer to con-

nect to the same session.

n If you wish to define an audit name to identify the consumer in event logs (see the Live Assist Over-

view and Installation Guide for more details on event logging), include an auditName parameter

© 2018 CaféX | Confidential Page 14



in the URL which creates the short code:

/assistserver/shortcode/create?auditName=consumer

Ending a Support Session

When voice and video is enabled, the user can end the session using the default UI that Live Assist adds;

the application can also end the session programmatically using the AssistSDK.endSupport function.

In co-browse-only mode, Live Assist does not add a default UI, so the application must call

AssistSDK.endSupport to end the support session.

© 2018 CaféX | Confidential Page 15



During a Co-browsing Session

While a co-browsing session is active (after the application has called startSupport successfully, and

before either it calls endSupport or receives the onEndSupport notification to indicate that the agent

has ended the support session), the application may:

n Accept an agent into, or expel the agent from, the co-browsing session

n Pause and resume the co-browsing session

n Receive a document from the agent

n Push a document to the agent

n Receive an annotation (a piece of text or drawing to show on the device's screen, overlaid on the applic-

ation's view) from the agent

n Have a form on its screen wholly or partly filled in by the agent

Actions which are initiated by the application (such as pushing a document to the agent) require it to call

one of the methods on the AssistSDK object.

Actions initiated by the agent (such as annotating the consumer's screen) can in general be allowed to pro-

ceed without interference from the application, as the Live Assist SDKmanages them, overlaying the

user's screen with its own user interface where necessary.

However, the application can receive notifications of these events by defining one or more of the callback

functions on the AssistSDK object:

window.AssistSDK = {

onEndSupport: function() {

...

};

}

Callbacks

When it calls startSupport, the consumer application can provide callback functions to the consumer

web SDK. The SDK calls these functions to notify the application of events; the application can respond to

the events, and in some cases can tell the SDK what to do next.

© 2018 CaféX | Confidential Page 16



onConnectionEstablished

A consumer application can implement the onConnectionEstablished callback to receive notification

when an agent first joins a Live Assist session. Once this has happened, the agent may request per-

mission to co-browse.

AssistSDK.onConnectionEstablished = function() {

console.log("Connection Established");

};

Note: By default, Live Assist presents the request for permission to the user; however, the application can

override this behavior; see the onScreenshareRequest section below.

onWebcamUseAccepted

When Live Assist establishes a voice and video call, it prompts the consumer to allow the application to

use their webcam; the application receives this callback after the user has given permission. You might use

it to update the user interface to remove a warning message, or to update a progress indicator:

AssistSDK.onWebcamUseAccepted = function() {  

// Hide the warning

hideWebcamWarning();

};

onScreenshareRequest

The onScreenshareRequest callback notifies the application when an agent asks to co-browse the con-

sumer's screen. It gives the application an opportunity (by returning true) to allow the screenshare

without asking the consumer (for example, there could be a flag in the application's configuration which

gives permanent permission for screen sharing):

AssistSDK.onScreenshareRequest = function() {

if (screenshareAllowed) {

return true;

}

...

return false;

};

By default, Live Assist displays a dialog box when an agent requests co-browsing, allowing the consumer

to accept or reject the co-browse.

© 2018 CaféX | Confidential Page 17



onInSupport

The application can receive an onInSupport callback when it accepts a screenshare, and the agent has

joined the co-browse. It gives the application an opportunity to change its own UI to reflect the fact that a

co-browsing session is active, or to log events.

AssistSDK.onInSupport = function() {

// Show user extra UI as they’re in a Live Assist session

showCobrowseUI();

};

onPushRequest

When the agent pushes a document to the consumer, by default Live Assist displays a dialog box, allow-

ing the user to accept or reject the document; if they accept it, it shows the document to the consumer.

Acceptable document types are: PDF, and the image formats GIF, PNG, and JPG/JPEG.

The application developer can override this behavior using the onPushRequest callback. The SDK calls

this function when the agent pushes a document to the consumer, before it displays it (note that the applic-

ation does not receive this callback when the agent pushes a URI). The callback function receives two func-

tions: an allow function and a deny function. The callback function should call the allow function to

show the pushed document to the consumer, or the deny function to reject the pushed document:

AssistSDK.onPushRequest = function(allow, deny) { 

var result = confirm("The agent wants to send you a document or image.
Would you like to view it?");

if (result)

allow();

else

deny();

}

The above function's behavior is very similar to the default behavior. It shows a confirmation prompt on

the screen, and lets the user click OK or Cancel, depending on whether they want to view the document.

To always show documents without prompting:

AssistSDK.onPushRequest = function(allow, deny) {

allow();

}

© 2018 CaféX | Confidential Page 18



Document Callbacks

By default, after it receives a document, Live Assist opens a window to display the shared document; if

there is an error loading or parsing the shared document file, it displays an error window. It does this

without any interaction from the application.

If it successfully load, parses, and displays the shared document, the SDK calls the

onDocumentReceivedSuccess callback function; the function receives a sharedDocument object

(described below). If an error occurs while trying to load or parse the shared document, it calls the

onDocumentReceivedError callback function, which also receives a sharedDocument object. The two

callback functions are optional - the SDK does nothing if you do not supply them.

The sharedDocument object that the SDK passes to the onDocumentReceivedSuccess and

onDocumentReceivedError functions contains an id property, which is a unique identifier for the doc-

ument; and may contain a metadata property, which contains additional information about the document

supplied by the agent. It also has a close method, which the application can call to close the shared doc-

ument window or error window. Additionally, the application may add an onClosed handler to the

sharedDocument object, to receive notification when the window closes due to a user (consumer or

agent) closing it from the UI.

The following code creates onDocumentReceivedSuccess and onDocumentReceivedError call-

backs, adds an onClosed handler to the sharedDocument object, and sets a timer to call

sharedDocument.close:

AssistSDK.onDocumentReceivedSuccess = function(sharedDocument) {

console.log("*** shared item opened successfully: " + sharedDocument.id);

sharedDocument.onClosed = function(actor) {

alert("Shared document window has closed by " + actor + ".");

};

console.log("Setting shared item " + sharedDocument.id + " to close in 15
secs.");

setTimeout(function() {

console.log("*** Closing shared item " + sharedDocument.id);

sharedDocument.close();

}, 15 * 1000);

};

AssistSDK.onDocumentReceivedError = function(sharedDocument) {

console.log("*** shared item opened with error: " + sharedDocument.id);

sharedDocument.onClosed = function(actor) {

© 2018 CaféX | Confidential Page 19



alert("Shared document error window has been closed by " + actor +
".");

};

setTimeout(function() { sharedDocument.close();}, 5 * 1000);

};

Note: The application does not receive these callbacks if the agent pushes a URI.

Annotation Callbacks

There are two callbacks whichnotify the application when an agent draws on a shared screen:

n onAnnotationAdded(annotation, sourceName)

Called when an annotation is received from an agent. The annotation object contains the fol-

lowing properties:

Property Description

stroke The color of the annotation

strokeOpacity A number between 0.0 and 1.0 indicating the opacity of the annotation

strokeWidth A number giving the width of the line of the annotation

points An array of points representing the path of the annotation. By default, Live

Assist draws a line with the color, opacity, and width, following these points

as its path.

n onAnnotationsCleared()

Called when an agent clears the annotations.ons.

You can implement these callbacks to control the display and clearing of annotations, or simply to record

what the agent has sent:

AssistSDK.onAnnotationAdded = function(annotation, sourceName) {

console.log("Annotation added by " + sourceName);

};

AssistSDK.onAnnotationsCleared = function() {

console.log("Annotations cleared");

}

See the Annotations section on page 30 for more details.

© 2018 CaféX | Confidential Page 20



Zoom Callbacks

The application can receive notifications when the zoom window opens or closes (see the Zoom section

on page 29):

AssistSDK.onZoomStarted = function() {

...

pushDocumentButton.disabled = true;

});

AssistSDK.onZoomEnded = function() {

...

pushDocumentButton.disabled = false;

});

You might want to use these callbacks to update the user interface to prevent user interaction which will

not work.

The application will receive these callbacks whether the consumer or agent application opens or closes the

zoom window.

Co-browsing Callbacks

As well as using the CSS class mechanism to customize its user interface (see the Customizing the Live

Assist popup Window section on page 32), there are two callback functions which the consumer web

application can implement to define what happens when co browsing starts and ends:

AssistSDK.onCobrowseActive = function() {

// Display indicator, log, etc.

}

AssistSDK.onCobrowseInactive = function() {

// Remove indicator, log, etc.

}

If an application does not provide these callbacks, the SDK provides a default implementation, displaying a

banner at the top of the browser window, stating This page is currently being shared.

Agent Callbacks

The application can implement the following callbacks to receive notification when agents join and leave

the co-browsing session::

© 2018 CaféX | Confidential Page 21



n onAgentJoinedSession(agent)

This callback indicates that an agent has answered the support call and joined the support session;

this occurs before the agent either requests or initiates co-browsing. The callback allows the

developer to pre-approve the agent into the co-browse, before the agent makes the request.

n onAgentRequestedCobrowse(agent)

This callback notifies the developer that the agent has specifically requested to co-browse. There is

no specific requirement for the application to allow or disallow co-browsing at this point, but it is an

obvious point to do so.

n onAgentJoinedCobrowse(agent)

This callback indicates when the Agent joins the co-browse session.

n onAgentLeftCobrowse(agent)

This callback occurs when the agent leaves the co-browse session, and can no longer see the con-

sumer’s screen. Leaving the co-browse also resets the agent's co-browse permission; the agent may

subsequently request co-browse access again.

n onAgentLeftSession(agent)

This callback notifies the application that the agent has left the overall support session.

The agent parameter to all these callbacks is a JavaScript object which can be passed in to the

AssistSDK.allowCobrowseForAgent or AssistSDK.disallowCobrowseForAgent functions. See

the Allow and Disallow Co-browse for an Agent section on page 24.

These callbacks allow the developer to maintain a list of agents that are in the co-browse and dynamically

allow them in and out of the co-browsing session at any time. To do this the developer can hold on to the

agent references that they receive during the onAgentJoinedSession callback, which will remain valid,

and can then admit and eject agents during the co-browsing session on whatever basis the application

determines.

The default implementation displays a dialog box on the consumer's device, asking whether to allow co-

browsing or not. If the consumer allows co-browsing, it allows any agent into the co-browsing session

whenever they request it. Implementing this interface can give the application more control over which

agents are allowed into the co-browsing session, and when.

© 2018 CaféX | Confidential Page 22



onEndSupport

When a Live Assist session terminates (for example when the call ends, or the consumer application calls

AssistSDK.endSupport), the application can receive notification in the onEndSupport function.

AssistSDK.onEndSupport = function() {  

...

};

This callback provides a place for the application to reset its user interface to indicate that it is no longer in

a support session. Live Assist removes its own UI automatically, so the application only needs to restore

any changes it has made itself.

onError

The application can handle error events that cause the failure of a Live Assist session using the onError

callback:

AssistSDK.onError = function(error) { 

...

}

The error object received by the callback is a JavaScript object with properties code and message. The

message property is a free-form text message. The following error codes may be received:

Error Code Value
Received by:

Meaning
Agent Consumer

CONNECTION_

LOST

0 Yes Yes Failed to connect after retry count. No retry inter-

vals specified, will not attempt to reconnect.

PERMISSION 1 Yes Yes Received a permission change message on a topic

with no permissions.

Error trying to leave a topic. The message will

include topic ID and error message.

SOCKET 2 Yes Yes Low level socket error. The message will include

the socket error code.

CALL_FAIL 3 Yes Yes Tried to share a document when co-browsing is

not active.

© 2018 CaféX | Confidential Page 23



Error Code Value
Received by:

Meaning
Agent Consumer

Tried to allow or disallow co-browsing for an

agent when support is not active.

POPUP 4 No Yes Couldn’t reconnect to popup.

SESSION_IN_

PROGRESS

5 Yes Yes There is already a session in use.

SESSION_

CREATION_

FAILURE

6 No Yes Error connecting to server. The message will

include the server URL.

Note: Not all errors can be received by both parties.

Allow and Disallow Co-browse for an Agent

You may wish to remove a specific agent from the co-browsing session. To do this, call:

AssistSDK.disallowCobrowseForAgent(agent)

passing in the agent object received in the onAgentRequestedCobrowse callback (see the Agent Call-

backs section on page 21).

If the agent is already in the co-browse session, they are removed from it; if they are not in the co-browse

session, they will not be admitted until the application calls

AssistSDK.allowCobrowseForAgent(agent);

When the application calls allowCobrowseForAgent, the specified agent joins the co-browse imme-

diately.

Web-specific considerations

On the web, when the consumer navigates to a new support enabled page during a support session, the co-

browse, and indeed the entire support session, is torn down and recreated on the new page. This means

that any agents will re-join the session on each page without any permission to access the co-browse, and

permission will need to be re-granted to the appropriate agents in order for the co-browse to continue

without interruption.

© 2018 CaféX | Confidential Page 24



Agent accepted into co-browse

When an agent is accepted into the co-browse, the following occurs:

1. Consumer starts support session.

2. Agent joins session.

3. agentJoinedSession callback fired in the consumer application.

4. Agent requests co-browse.

5. agentRequestedCobrowse callback fired in the consumer application.

6. The consumer application has logic that decides the agent is allowed access to the co-browse. This

logic could be based on permissions.

7. Agent is accepted into the co-browse.

8. Agent joins the co-browse.

9. agentJoinedCobrowse callback fired in the consumer application.

10. Agent can see the consumer’s screen.

© 2018 CaféX | Confidential Page 25



Agent rejected from co-browse

1. Agent requests co-browse.

2. agentRequestedCobrowse callback fired in the consumer application, with the agent's permissions.

3. Consumer application checks the agent permissions, and finds they do not have the required per-

missions to view the current part of the application.

4. Consumer application rejects the agent’s request to join the co-browse, and the agent is unable to see

the consumer’s screen.

© 2018 CaféX | Confidential Page 26



Pausing and Resuming a Co-browsing Session

The application can temporarily pause a co-browse session with the agent by calling:

AssistSDK.pauseCobrowse();

While paused, the connection to the Live Assist server remains open, but the co-browse session is dis-

abled, disabling annotations, document sharing, and so on as a consequence. When the application wishes

to resume the co-browsing session, it should call:

AssistSDK.resumeCobrowse();

When the application pauses a co-browse, Live Assist notifies the Agent Console, which can present a

notification or message to the agent to indicate what has happened.

Sharing Documents

As well as receiving shared documents from the agent (see the onPushRequest section on page 18),

applications can use the Live Assist SDK to share documents with the agent during a co-browsing ses-

sion. Acceptable document types are: PDF, and the image formats GIF, PNG, and JPG/JPEG.

Documents shared in this way appear the same as documents pushed by the agent: PDFs are full screen;

images are in windows that can be dragged, re-sized, or moved.

© 2018 CaféX | Confidential Page 27



Note: Sharing a document does not actually send the document to the agent, but simply displays the doc-

ument on the local device, so that both the consumer and the agent can see and co-browse the document.

The application shares a document by calling:

AssistSDK.shareDocument(document, onLoad, onError);

Where

n document is a PDF document or image to be shared, expressed as one of the following:

n A string URL pointing to the PDF document or image to share

n A JavaScript file or Blob object containing the PDF document or image

n onLoad is a callback function that takes no arguments, and is called when the document is suc-

cessfully loaded.

n onError is a callback function that is called when an error occurs loading the document, it is passed

the following arguments:

n an error code

n an error message.

The error codes are the same as the agent-side error codes for document push, and may be one of the fol-

lowing:

Error Code Value
Received By:

Agent Consumer

SHARED_DOCUMENT_ERROR_CONNECTION_ERROR 1 Yes Yes

SHARED_DOCUMENT_ERROR_HTTP_ERROR 2 Yes Yes

SHARED_DOCUMENT_ERROR_UNSUPPORTED_MIME_TYPE 3 Yes Yes

SHARED_DOCUMENT_ERROR_FILE_PARSING_ERROR 4 No Yes

SHARED_DOCUMENT_ERROR_NO_DATA_RECEIVED 5 Yes No

SHARED_DOCUMENT_ERROR_CO_BROWSE_NOT_ACTIVE 6 No Yes

Not all values are possible in either case, for example, the agent never receives error code 6, and the con-

sumer never receives error code 5.

© 2018 CaféX | Confidential Page 28



The error message is a text string describing the error; it is intended for debugging and logging, rather than

for displaying to an end user.

Zoom

Either agent or consumer can open a zoom window on the consumer's device. While the zoom window is

open, it displays a magnified version of the content of the consumer's screen where it is positioned.

The zoom window contains controls to change the magnification and to close the window. Either party can

use these controls, or move the window about the consumer's screen by dragging it (so the agent can

move the zoom window to a part of the consumer's screen they want to look at, or the consumer can move

it to a part of the screen they want the agent to look at).

You can change the appearance of the zoom window in CSS by adding styles for the element with ID

assist-zoom-window; for example:

#assist-zoom-window {

border: 3px solid red;

}

to give the zoom window a red border for greater visibility.

Opening the Zoom Window

The application can open the zoom window by calling the AssistSDK.startZoom function:

zoom: function() {

AssistSDK.startZoom();

...

}

You would normally assign the zoom function to the onclick handler of a button.

There is an equivalent AssistSDK.endZoom function, but you will not normally need to call this expli-

citly; normally, one of the users closes the zoom window with the its close button, and if it is open when

the Live Assist session ends, Live Assist closes it automatically.

Note: Document sharing and zooming are mutually exclusive. If the zoom window is open when you call

AssistSDK.shareDocument, it has no effect (apart from logging a message to the console). Similarly, if

a shared document is open when you call AssistSDK.startZoom, it does nothing.

© 2018 CaféX | Confidential Page 29



Annotations

By default the Live Assist SDK displays any annotations which the application receives on an overlay, so

that the consumer can see them together with their own screen. Normally an application needs to do noth-

ing further, but if it needs to receive notifications when an annotation arrives or is removed, it can imple-

ment one of the annotation callbacks (see the Annotation Callbacks section on page 20).

Setting the z-index of the annotation layer

Elements in HTML pages may have a z-index property, which specifies the order to display them. Ele-

ments with a high z-index appear in front of elements with a lower z-index, potentially hiding the

lower z-index elements.

Some sites may have a high z-index on some elements, leading to annotations appearing behind them.

Using CSS, you can set the z-index value of the glass-pane so that it is high enough to overlay all the

elements on the page:

#glass-pane {

z-index:XXXXX !important; // Set to appropriate value

}

Note:

n Legitimate values for z-index are auto, initial, inherit, or a number (negative numbers are

allowed), but if you need to set it, you will probably want to set it to a positive number in order to

bring the annotation layer to the top. The other values seem to be less useful in this case.

n z-index only works on positioned elements (position:absolute, position:relative, or

position:fixed).

n !important is necessary in order to override the z-index setting of other objects.

Form Filling

One of the main reasons for a consumer to ask for help, or for an agent to request a co-browse, is to enable

the agent to help the consumer to complete a form which is displayed on their device. The agent can do

this whenever a Live Assist co-browse session is active, without further intervention from the application,

but there are some constraints on how forms should be designed.

© 2018 CaféX | Confidential Page 30



The Live Assist SDK automatically detects form fields represented by input elements, and relays these

forms to the agent so that the agent can fill in values for the user. You must provide each element with a

unique label in the HTML, in one of the following ways:

n providing a label for the field and including the for attribute:

<label for="otherloans_id">Other Loans: </label>

<input id="otherloans_id" type="text"/>

n setting the title attribute of the input element:

<input type="text" title="Other Loans"/>

n setting the name attribute of the input element:

<input type="text" name="Other Loans"/>

n setting the id attribute of the input element:

<input type="text" id="other_loans"/>

n setting the value attribute of the input element, if the input is of type radio:

<input type="radio" name="bedrooms" value="studio"/>

<input type="radio" name="bedrooms" value="one"/>

<input type="radio" name="bedrooms" value="two"/>

The SDK looks for a label to present to the user in the order above; if it does not find a <label> element

for the field, it will look for a title attribute; if it does not find a title attribute either, it will look for a

name attribute; and so on.

The SDK automatically prevents the agent from performing form fill if the type is password.

Note: While the SDK prevents these fields from being presented to the agent as fillable form data, it does

not prevent them from being visible as part of the co-browse. You can hide them by adding the appropriate

class or permission to the element (see the Excluding Elements from Co-browsing section below).

Excluding Elements from Co-browsing

When an agent is co-browsing a form, you may not want the agent to see every control on the form. Some

may be irrelevant, and some may be private to the consumer.

To do this, add a CSS class (assist-no-show) to HTML elements, which instructs the Live Assist SDK

to mask those areas:

<div id="sensitive-details" class="assist-no-show">content</div>

© 2018 CaféX | Confidential Page 31



By default, Live Assist shows excluded elements as black boxes that occupy the same space on the page

as the original element; you can specify the color of the box using the color attribute of the special

assist-no-show-agent-console CSS class in your stylesheet (the color attribute is the only attrib-

ute of the assist-no-show-agent-console class that has any effect). The color attribute only

affects the rendering of the boxes on the agent console, and does not affect the display of the elements on

the consumer’s pages. For example, the following CSS code makes elements marked with the assist-no-

show class display as orange boxes in the agent console:

.assist-no-show-agent-console {

color: orange;

}

You can make them not appear at all:

.assist-no-show-agent-console {

color: transparent;

}

For more detailed control over element visibility, see the Permissions section on page 38.

Co-browsing Visual Indicator

The SDK provides a means to customize the visual indication displayed during screen sharing. The default

implementation displays a banner at the top of the window. During screen sharing, the main window of

the application has the CSS class assist-cobrowsing (in addition to any other CSS classes it may

have). You can customize the visual indication by defining this class in your style-sheet and adding prop-

erties to it.

Customizing the Live Assist popup Window

You can customize the colors, fonts, and images of the Live Assist popup window by creating a CSS file

with styles for the body tag, and for elements with the #title, #logo, and #status IDs. When you call

startSupport, include the CSS file URL as the popupCssUrl member of the configuration object:

var config = {

destination: "agent1",

popupCssUrl: "/assistsample/css/popup.css"

};

...

AssistSDK.startSupport(config);

To customize the background of the window, specify background attributes for the body tag:

© 2018 CaféX | Confidential Page 32



body {

background-color: #0000FF;

background-image: url('/assistsample/img/foo.jpg');

}

To customize the Live Assist logo, specify a background image for the #logo ID, along with width and

height attributes:

#logo {

background-image: url('/assistsample/img/newlogo.png');

width: 64px;

height: 64px;

}

Customize fonts by specifying font attributes for the #title and #status IDs.

Popup window position

The default position of the Live Assist popup window may obscure an important part of the consumer's

screen. The application can control the position of the window by including the popupInitialPosition

property in the configuration object passed to startSupport. The value should be an object containing

two properties, top and left, which control the position (in pixels) of the popup window:

var config = {

popupInitialPosition = {

top: 200,

left: 500

},

};

...

AssistSDK.startSupport(config);

Note: If you use negative numbers in for the top and left values, the Live Assist popup window

appears at 0,0 on the consumer's screen.

WebSocket Reconnection Control

When a co-browse session disconnects due to technical issues, the default behavior is to attempt to recon-

nect six times at increasing intervals. You can control this behavior by passing in one or both of the fol-

lowing when the application calls startSupport (see the Session Configuration section on page 9):

n Connection configuration

n A set of callbacks for connection events, allowing an application to perform its own reconnection

© 2018 CaféX | Confidential Page 33



handling, or to simply inform the user of the status of the current connection

Connection Configuration

You can use the optional retryIntervals property of the connection object to control reconnection beha-

vior (see the Session Configuration section on page 9):

var configuration;

configuration.destination = 'agent1';

configuration.retryIntervals = [5.0,10.0,15.0];

...

AssistSDK.startSupport(configuration);

If the WebSocket connection to the Live Assist server goes down, Live Assist will try to re-establish the

connection to the server the number of times specified in the array, with the specified time in seconds

between them. In the above example, Live Assist would try to reconnect 5 seconds after the initial dis-

connection; then, if that fails, it would try 10 seconds after that; then, if that fails, it would try 15 seconds

after that; and if that reconnection attempt fails, it will give up and not try again.

Note: If you do not specify retryIntervals in the connection object, Live Assist will use its default val-

ues, which are [1.0, 2.0, 4.0, 8.0, 16.0, 32.0]. If you specify an empty array, Live Assist

will make no reconnection attempts.

Connection Callbacks

If the default reconnection behavior of Live Assist is not what you want, even after specifying the retry

intervals, you can implement a set of connection callbacks and pass them to Live Assist in the

connectionStatusCallbacks property of the configuration object:

var callbacks = {

onDisconnect: function(error, connector) {},

onConnect: function() {},

onTerminated: function(error) {},

willRetry: function(inSeconds, retryAttemptNumber, maxRetryAttempts,
connector) {}

};

var config = {destination: 'agent1', connectionStatusCallbacks: callbacks};

...

AssistSDK.startSupport(config);

The connectionStatusCallbacks property is itself an object with the properties onDisconnect,

onConnect, onTerminated, and willRetry. These must all be functions defined in the JavaScript.

© 2018 CaféX | Confidential Page 34



Note:

n These callbacks need to be defined and added to the configuration explicitly as above. It is not

enough to define them on the appropriate object, as it is with other callbacks.

n If you do not specify retryIntervals in the configuration object, Live Assist will use its default

reconnection behavior; if you specify retryIntervals , Live Assist will use its default recon-

nection behavior using those values. You can turn off the default reconnection behavior, and take

full control of reconnection, by specifying an empty list for retryIntervals.

When implementing your own reconnection logic, the most important notifications you receive are

onDisconnect (called whenever the connection is lost) and willRetry (called when automatic recon-

nection is occurring, and there are more reconnection attempts to come). Both these methods include a

connector object in their arguments; use the connector object to make a reconnection attempt, or to ter-

minate all reconnection attempts.

Callback Description

onDisconnect Called for the initial WebSocket failure, and for every failed reconnection attempt

(including the last one).

This method is called regardless of whether retryIntervals is specified (that is,

whether automatic reconnection is active or not).

The connector object allows the implementing class to control reconnection, even

if reconnection is automatic. For example, an application might decide to give up

reconnection attempts even if more reconnection attempts would normally occur; or

to try the next reconnection attempt immediately without waiting until the next retry

interval has passed.

onConnect Called when a reconnection attempt succeeds.

This may be useful to clear an error indication in the application UI, or for canceling

reconnection attempts if the application is managing its own reconnections.

willRetry Called under the following conditions:

n when the WebSocket connection is lost; or

n when a reconnection attempt fails and automatic reconnections are occurring

© 2018 CaféX | Confidential Page 35



Callback Description

(retryIntervals is a non-empty array) and there are more automatic recon-

nection attempts to be made.

This method is called after the onDisconnect method.

Use the connector object to override reconnection behavior. For example, to make

a reconnect attempt immediately.

onTerminated Called under the following conditions:

n when all reconnection attempts have been made and failed, or

n when either the Connector.disconnect or the AssistSDK.endSupport

function is called.

Example - make a reconnection attempt immediately on disconnection:

In this example, the default reconnection behavior has been disabled, and the application reconnection

behavior is dependent on the reason for disconnection.

var onDisconnect = function(error, connector) {

switch(error.code) {

case -1:

connector.terminate(error);

break;

default:

connector.reconnect();

break;

}

}

Example - terminate reconnection attempts in response to user command:

In this example, the default reconnection behavior has not been disabled, but there is a UI control which

the user can press to short-circuit the reconnection attempts. If the user has not terminated the connection

attempts, automatic reconnection attempts continue.

var willRetry = function(retryInSeconds, retryAttemptNumber,
maximumRetryAttempts, connector) {

if (userHasTerminatedConnection) {

connector.terminate({code: -1, message: 'User has terminated
connection'});

}

© 2018 CaféX | Confidential Page 36



}

© 2018 CaféX | Confidential Page 37



Permissions

You can use permissions to prevent an agent from interacting with, or even seeing, a UI control. Whether

an agent can see a particular control or not depends upon both the agent's and the control element's

permissions.

n Control element permissions

Client applications assign permission markers to UI control elements by calling the

AssistSDK.setPermissionForElement method:

var element = document.getElementById('element_id');

AssistSDK.setPermissionForElement('permission_X', element);

or by setting it on the element in the HTML as a data attribute:

<input type='button' id='id_hidden' data-assist-permission='permission_
X'/>

where permission_X is the permission marker to set on the control.

Each UI element has at most one permission marker value; elements which do not have a permission

marker inherit their parent element’s permission marker; an element which does not have a per-

mission marker either assigned explicitly or inherited from its parent, is assigned the default per-

mission marker.

The default permission is explained further in the the Default Permission section on page 44.

n Agent permissions

Agents have two sets of permissions, viewable permissions and interactive permissions. Each set

may contain an arbitrary number of values. Agents which are not assigned any permissions have

the default permission for both interactive and viewable permission sets.

Live Assist grants permissions to the agent when the agent presents a Session Token Description

to the Live Assist server (see the Live Assist Agent Console Developer Guide for more inform-

ation about setting agent permissions, and under what circumstances the agent can be implicitly

assigned the default permission).

The application can determine an agent’s permissions from the agent object which it receives in the

agent callbacks (see the Agent Callbacks section on page 21). If the application needs to examine

this (for instance, to notify the consumer that a particular control will not be visible to the agent),

© 2018 CaféX | Confidential Page 38



use the viewablePermissions and interactivePermissions properties of the agent object.

These properties are arrays of strings representing the permissions an agent has:

var permissions = agent.viewablePermissions();

var index = permissions.findIndex(function(element) {

return element == 'permission_X';

});

if (index >= 0) {

...

}

Note: If the agent specifies permissions in the Session Token Description, but leaves both the

viewable set and interactive set empty, the agent will end up with no permissions, not even the

default permission.

The combination of the element's and the agent's permissions determines the visibility of a UI element to

an agent. A UI element is visible to a specific agent if, and only if, the agent’s set of viewable permissions

contains the permission marker assigned to or inherited by that element. Similarly, an agent may interact

with a UI element if and only if the agent’s set of interactive permissions contains the element's permission

marker.

Permissions and permission markers are free-form text, which (apart from the reserved default per-

mission) are in the control of the application developer. Live Assist will show to the agent those, and only

those, elements which the agent has permission to view; but it is up to the application developer to ensure

that each agent has the permissions they need, and that the UI elements have corresponding permission

markers assigned.

Live Assist assumption: When an agent wishes to establish a co-browse, the permissions the agent

should have, as defined by the organization’s infrastructure, are known, and can be translated into an equi-

valent set of permissions in the Session Description.

© 2018 CaféX | Confidential Page 39



Agent and Element Permissions

Permissions are compound such that:

Permission

marker on

element

Agent

viewable

permission

set

Agent

interactive

permission

set

Result

X ["X"] ["X"] Agent can view and interact with an element marked

with X.

X ["X"] [] Agent can view the element marked with X but cannot

interact with it.

X [] ["X"] Agent can neither view nor interact with the element,

because it does not have X in its viewable set. (In order

to interact with an element, and agent must first be able

to view it.)

X [] [] Element marked with X is masked or redacted, as Agent

does not have the X permission in its viewable or

interactive set.

X ["default"] ["default"] Element marked with X is masked or redacted, because

Agent does not have the X permission in its viewable or

interactive set.

X ["default"] ["X"] Agent can neither view nor interact with the element,

because it does not have X in its viewable set.

X ["X"] ["default"] Agent can view the element, because it has the X

permission in its viewable set; it cannot interact with it,

because it does not have the X permission in its

interactive set.

© 2018 CaféX | Confidential Page 40



Permission

marker on

element

Agent

viewable

permission

set

Agent

interactive

permission

set

Result

B ["X"] ["X"] Element marked with B is masked or redacted, because

Agent has X permission and not B in their permission

set.

["X","default"] ["X","default"] Agent can view and interact with the element because

they have the default permission in their viewable

and interactive sets, and the element implicitly has the

default permission.

["X"] ["X"] Element is masked or redacted, because Agent’s sets do

not contain the default permission

["default"] ["default"] Agent can view and interact with the element, because

they have the default permission set for their

viewable and interactive set.

[] [] Element is masked or redacted, because Agent's sets do

not contains default permission

["default"] ["X"] Agent can see the element because they have the

default permission in their viewable set. They cannot

interact with it because they do not have the default

permission in their interactive set.

B ["X"] ["B"] Element is masked or redacted because the agent’s

viewable set does not contain B. The agent may not

interact with an element which they cannot see, even

though they have the appropriate permission in their

interactive permission set.

© 2018 CaféX | Confidential Page 41



Permission

marker on

element

Agent

viewable

permission

set

Agent

interactive

permission

set

Result

B ["B"] ["X"] Element is viewable, because the agent's viewable set

contains B; the element is not interactive, as the agent's

interactive set does not contain B.

An agent is granted a permission if a permission (such as A, B, or X) configured in their Session Descrip-

tion matches the permission-marker of the UI element in the application.

Note: In some circumstances an agent can be granted the default permission implicitly, but that is not

the same thing as having an empty set of permissions. In the above table, an empty set of agent per-

missions means exactly that; a set of permissions containing only the default permission may have been

granted either implicitly or explicitly.

Parent and Child Permissions

An element can also inherit permissions through the UI hierarchy: UI elements that are a child of a parent

UI element inherit the permission marker of the parent, unless the child specifies a permission marker of

its own.

A child element can override its parent permission marker, but it will only be effective if the agent's view-

able permission set contains the parent’s permission marker as well as the child's (the agent must be able

to see the container in order to interact with an element inside it). This allows the developer to make a child

element interactive and the parent element not. An example use of this could be a child button within a par-

ent container, where only the button needs to be interactive.

© 2018 CaféX | Confidential Page 42



Permission

marker set

on parent

element

Permission

marker set

on child

element

Agent

viewable

permission

set

Agent

interactive

permission

set

Result

A ["A"] ["A"] Agent can view and interact with both parent

and child element. Child inherits permission

marker A.

A A ["A"] ["A"] Agent can view and interact with both parent

and child element.

A B ["A"] ["A"] Agent cannot view or interact with child

element marked with B.

A B ["A","B"] ["A"] Agent can view child element but cannot

interact with it

A B ["A","B"] ["B"] Agent can view and interact with the child

element but cannot interact with the parent.

A B ["B"] ["B"] Agent cannot view or interact with child or

parent element as they do not have the

parent’s permission marker in their viewable

permission set. The agent may not interact

with an element which they cannot see, even

though they have the appropriate permission

in their interactive permission set.

["default"] ["default"] Agent can view and interact with both parent

and child elements as they have the

default permission in their viewable and

interactive permission sets, and both parent

and child elements implicitly have the

default permission.

© 2018 CaféX | Confidential Page 43



Permission

marker set

on parent

element

Permission

marker set

on child

element

Agent

viewable

permission

set

Agent

interactive

permission

set

Result

B ["B"] ["B"] Agent cannot view or interact with child

element, because the parent has an implicit

default permission marker, and they do not

have the default permission in their

viewable permission set. The agent may not

interact with an element which they cannot

see, even though they have the appropriate

permission in their interactive permission set.

Default Permission

You do not have to assign a permission marker to every UI element which you want agents to view or

interact with; every element which does not have or inherit a permission automatically has the default

permission marker.

Elements which have the default permission marker are viewable and interactive for any agent which

has the default permission. Any agent which has the default permission includes the reserved word

default among its set of permissions (in theviewablePermissions or interactivePermissions

properties of the agent object).

Not every agent has the default permission, and an agent might have the default permission in its

viewable permissions, but not in its interactive permissions.

Dynamic Web Element Masking

You can also mask page elements that are dynamically added and removed using AJAX. To do this, the

application should call setPermissionForElementWithId, which allows the application to add a per-

mission to an element which does not yet exist:

AssistSDK.setPermissionForElementWithId('permission_X', 'element_id');

When the application calls the above method, typically when the page is loaded, Live Assist:

© 2018 CaféX | Confidential Page 44



n Checks to see if the element exists on the page:

n if it does, then the element is marked with the given permission.

n otherwise, it stores the combination of permission and element ID.

n Listens for DOM change events, and when a new element is added:

n if the element ID corresponds to one of the stored element IDs, Live Assist adds the stored per-

mission.

Note: The list of permission markers and element IDs is cleared when the page is refreshed, so

setPermissionForElementWithId does need to be called when the page is loaded.

The application can also call:

AssistSDK.setPermissionForElementInIframeWithId('permission_X', 'elementId',
iframe);

which does the same for an element within an iframe. The iframe parameter is the iframe element itself

(acquired by calling getElementById, createElement('iframe',...), or a similar function of the

Document object).

© 2018 CaféX | Confidential Page 45



Internationalization

The Live Assist Web SDK keeps its assets in assist_assets.war. You can edit this file to add another

language:

1. Get a copy of assist_assets.war from /opt/cafex/<FAS>/domain/deployment_backups (that is,

from the /domain/deployment_backups directory of your FAS installation). It will be named

assist_assets.war-<datetime>, where <datetime> is a date and time in ISO 8601 format.

2. Unzip it and open the file sdk/web/shared/locales/assistIi18n.en.json (this is the English lan-

guage file).

3. Edit the entries so that the values are in the target language.

4. Save the file in the same directory, under the name assistIi18n.<lang>.json, where <lang> is the

2 letter language code of the target language: es for Spanish, fr for French, and so on.

5. Re-zip the file, maintaining the original file structure, and redeploy it to the server (update assist_

assets.war with the new file – see the FAS Administration Guide).

When calling AssistSDK.startSupport, provide a locale parameter in the configuration object. The

value should be the 2 letter language code for the target language.

© 2018 CaféX | Confidential Page 46



Integrating with FCSDK

Live Assist SDKs use facilities from Fusion Client SDKs, and rely on an instance of the FCSDK being

available, so all the facilities of FCSDK are available for you to use if you want.

When you call the Assist.startSupport method and provide a destination, but no

correlationId or sessionToken, in the AssistConfig, Live Assist automatically starts a voice and

video call and a co-browse session with the agent, and automatically ends the call when the application

calls Assist.endSupport. If you want more control over the voice and video call than this, you can

access FCSDK objects from the global UC object:

n If you called startSupport with a configuration object which does not include a session token, it

automatically requests a session token and initializes FCSDK with it. In this case, the UC object is

automatically available as a global object for you to use.

n If you started a co-browse only session, there is no call under the control of the FCSDK, so the FCSDK

objects are not available.

Having obtained a UC object, you can use the facilities available from its phone object to control the call:

var call = UC.phone.getCall(CALL_ID);

...

call.end();

See the FCSDK Developer Guide for details on what call control facilities are available, and how to use

them.

© 2018 CaféX | Confidential Page 47



Starting a call without Voice and Video

You can use Live Assist in co-browse onlymode, if the voice or video call is provided independently of

Fusion Client SDK and Live Assist, or when something like a chat session is used instead of a voice and

video call.

To prevent Live Assist from placing a call using the Fusion Client SDK, the application should provide a

correlation ID that Live Assist uses to correlate the consumer and agent sides of the co-browsing ses-

sion. This allows an application to use the features of Live Assist (for example, co-browsing, document

push, annotation, and remote control) without voice or video.

For example, to add a link to click for support:

<a title="Live Assist"

onclick="AssistSDK.startSupport({correlationId : 'your_correlation_ID'})">

Live Assist</a>

where the parameter specified is the unique ID used to correlate agent and consumer sessions. The newly

created session for co-browsing is associated with the correlation ID which you supplied.

Note:

n In a co-browse only session, the application must explicitly call endSupport when the call ends (or

when the co-browse session is no longer needed), as Live Assist does not present its default UI to

the user.

n The correlation ID needs to be known to both parties in the call, and needs to be unique enough that

the same correlation ID is not used by two support calls at the same time. The application developer

must decide the mechanism by which this happens, but possible ways are for both parties to cal-

culate a value from data about the call known to both of them, or for one side to generate it and com-

municate it to the other on the existing communication channel. There is also a REST service

provided by Live Assist which will create a correlation ID and associate it with a short code; see the

Informing the Agent of the Correlation ID section on the next page.

Note: The correlation ID needs to be known to both parties in the call, and needs to be unique enough that

the same correlation ID is not used by two support calls at the same time. The application developer must

decide the mechanism by which this happens, but possible ways are for both parties to calculate a value

from data about the call known to both of them, or that one side calculates it and communicates it to the

© 2018 CaféX | Confidential Page 48



other. There is also a REST service provided by Live Assist which will create a correlation ID and asso-

ciate it with a short code; see the Informing the Agent of the Correlation ID section below.

Informing the Agent of the Correlation ID

Live Assist gives some help to the application in informing the agent of the correlation ID; it can create a

short code and associate it with the correlation ID when it creates the session, and the client can send the

short code out-of-band to the agent:

The advantage of communicating a short code, rather than communicating the correlation ID directly, is

that the short code generated by the Live Assist server is guaranteed to be both unique during the com-

munication process, and short enough for the client to communicate by voice (or whatever other out-of-

band communication channel is in use) without error.

Note:

n The short code expires 5 minutes after creation; it should therefore be used as soon as possible after

© 2018 CaféX | Confidential Page 49



being created.

n Once a short code has been used by both agent and consumer to communicate a correlation ID, it is

discarded, and may be used by a different agent and consumer to communicate a different cor-

relation ID.

Including a Second Agent

There is a second scenario in which the short code REST service can be used when there is no existing call

between the two parties. If an agent is in a co-browse session with a consumer and wishes to include a

second agent in the same co-browse session, the agent already knows the correlation ID of the Live Assist

session, and can use it in the initial call to the REST service, to associate that correlation ID with a newly

created short code:

The second agent application uses the short code in exactly the same way as before to connect to the same

co-browse session as the first agent and the consumer.

© 2018 CaféX | Confidential Page 50



WebSocket Initiation

To prevent getting a 302 error reported to you by a WebSocket during handshaking, ensure that your

deployment allows direct access to the WebSocket endpoint:

wss://<fas address>:<port>/assistserver/topic

© 2018 CaféX | Confidential Page 51



Controlling Updates to the Agent's View

During co-browsing, Live Assist observes changes in the Document Object Model on the consumer's web

page, and updates the agent's view if an element changes. If a page makes frequent changes to the DOM,

such as changing an element's style attribute, each of these changes causes an update to the agent's

view, making the agent's console unresponsive.

Note: The code which does this may not be explicit; some JavaScript frameworks make repeated changes

to the DOM as part of their normal operation.

If you find that one or more of the elements on a page changes frequently, you can prevent it from causing

Live Assist to update the agent's view, by including the element in the mutationBlacklist property of

the configuration object when you call startSupport:

var config;

config.destination = 'customer-support';

config.mutationBlacklist = {elements:['mutating-element-id']};

...

AssistSDK.startSupport(config);

The mutationBlacklist object contains three lists:

Property Contents

elements List of element id attributes; these elements are added to the mutationBlacklist.

classes List of class attributes; all elements with one of these class attributes are added to the

mutationBlacklist.

animations List of animation-name attributes; all elements with one of these animation-name

attributes are added to the mutationBlacklist.

DOM changes (such as changing the style attribute) for elements which have been added to the

mutationBlacklist do not make the agent's view update; other changes, such as scrolling the screen

(including entering data into a form element which is in the mutationBlacklist), do make the agent's

view update. When the agent's view does update, it includes the view of any blacklisted elements in their

state at the time of the update.

© 2018 CaféX | Confidential Page 52



A common reason to blacklist an element is if a web page has an animated logo. The agent does not need

to see the animation, and updating the agent's view for each change makes the agent console unre-

sponsive. Add the animated element to the blacklist:

config.mutationBlacklist = {animations: ['logo-animation'], classes:
['animated'] };

to prevent animation in any element which has a class attribute of animated, or an animation-name

attribute of logo-animation, from making the agent's view update. The agent sees an instantaneous

snapshot of the animated element.

© 2018 CaféX | Confidential Page 53



Consumer Session Creation

A client application needs an FCSDK Web Gateway session token and a correlation ID to establish a co-

browsing session. When the application calls startSupport, Live Assist uses a built-in mechanism to

create a session token for the voice and video call, and associates it with a correlation ID for the co-browse.

The built-in mechanism provides a standalone, secure mechanism for creating a session token and a cor-

relation ID, but the process is not integrated with any pre-existing authentication and authorization sys-

tem, and assumes that if a client can invoke startSupport, it is permitted to do so.

If you wish to integrate your Live Assist application with an existing authentication and authorization sys-

tem, you can disable the built-in mechanism (by setting the Anonymous Consumer Access setting to

disabled using the Web Administration service; see the Live Assist Overview and Installation Guide

for how to do this), and replace it with a bespoke implementation which uses the existing system to author-

ize and authenticate the client.

Once you have authenticated and authorized the application using the pre-existing system, the application

needs to create a session token (see the Fusion Client SDK documentation for details of how to create the

session token) and associate it with a correlation ID.

Session Token Creation

A bespoke implementation needs the following general steps:

1. Create a Web Application that can invoke the Session Token API REST Service, exposed by the

FCSDK Web Gateway.

2. Provide the appropriate Fusion Client SDK (if in use) configuration in a JSON object (the session

description).

3. Add Live Assist-specific data to the session description:

n AED2.metadata.role

This should be set to consumer

© 2018 CaféX | Confidential Page 54



n AED2.metadata.auditName

Optional name to use to identify the consumer in event log entries (see the Live Assist Over-

view and Installation Guide for details about event logging.

n AED2.allowedTopic

A regular expression which limits the correlation IDs which the session token can be used to

connect to. A value of .* allows the session token to be used to connect to any support session

with any correlation ID. For security reasons, we recommend that this should be set to the

value of the correlation ID which will actually be used:

{

...

"voice": {

...

},

"aed": {

"accessibleSessionIdRegex": "customer-ABCDE",

...

},

...

"additionalAttributes": {

{

"AED2": {

"metadata": {

"role": "consumer",

"auditName":"audit name"

},

"allowedTopic": "customer-ABCDE"

}

},

...

}

4. Request a session token by sending an HTTP POST request to the Session Token API, providing the

session description in the body of the POST.

For steps 1, 2, and 4, see the FCSDK Developer Guide, Creating the Web Application.

Note: The FCSDK Developer Guide documents both voice and aed sections - at least one of these must

be present to create the session token. However, if the session description includes a voice section (which

it must if voice and video functionality is required), then only the AED2 entries are needed for Live Assist

© 2018 CaféX | Confidential Page 55



functionality. If voice and video functionality is not needed, and there is no voice section, then there must

be an aed section as well as the AED2 section entries.

© 2018 CaféX | Confidential Page 56


	Introduction
	Integration with an Existing Application
	Packaging JavaScript
	Making Pages Supportable
	Supporting Iframes
	allowedIframeOrigins


	Starting a Support Session
	Session Configuration

	Escalating a Call to Co-browsing
	Ending a Support Session

	During a Co-browsing Session
	Callbacks
	onConnectionEstablished
	onWebcamUseAccepted
	onScreenshareRequest
	onInSupport
	onPushRequest
	Document Callbacks
	Annotation Callbacks
	Zoom Callbacks
	Co-browsing Callbacks
	Agent Callbacks
	onEndSupport
	onError

	Allow and Disallow Co-browse for an Agent
	Agent accepted into co-browse
	Agent rejected from co-browse

	Pausing and Resuming a Co-browsing Session
	Sharing Documents
	Zoom
	Opening the Zoom Window

	Annotations
	Setting the z-index of the annotation layer

	Form Filling
	Excluding Elements from Co-browsing

	Co-browsing Visual Indicator
	Customizing the Live Assist popup Window
	Popup window position


	WebSocket Reconnection Control
	Connection Configuration
	Connection Callbacks


	Permissions
	Agent and Element Permissions
	Parent and Child Permissions
	Default Permission
	Dynamic Web Element Masking

	Internationalization
	Integrating with FCSDK
	Starting a call without Voice and Video
	Informing the Agent of the Correlation ID
	Including a Second Agent


	WebSocket Initiation
	Controlling Updates to the Agent's View
	Consumer Session Creation
	Session Token Creation


