
Fusion Client SDK

Developer's Guide

Version 3.3

This document contains confidential information that is proprietary to CaféX Communications Inc. No

part of its contents may be used, disclosed or conveyed to any party, in any manner whatsoever, without

prior written permission from CaféX Communications Inc.

© Copyright 2018 CaféX Communications Inc.

All rights reserved.

Updated: 2018-06-18

Document version: 3.3/1

Contact Information

For technical support or other queries, contact CaféX Communications Support at:

support@cafex.com

For our worldwide corporate office address, see:

http://www.cafex.com

© 2018 CaféX | Confidential Page 2

Documentation Set

n FCSDK Overview Guide

n FCSDK Architecture Guide

n FCSDK Installation Guide

n FCSDK Administration Guide

n FCSDK Developer Guide

Related Documentation

Fusion Application Server

n FAS Architecture Guide

n FAS Installation Guide

n FAS Administration Guide

© 2018 CaféX | Confidential Page 3

Contents

Documentation Set 3

Related Documentation 3

Creating the Web Application 14

Communication with the Client 14

Authenticating the User 15

Creating the Session 15

Examples 20

Voice and Video Calling 20

Voice and Video Calling with URL 20

AED Only 21

Using the UUI 21

JSON Response 22

Ending the Session 22

Creating a Browser Client Application 24

Setting up a Project 24

Initializing the SDK 25

Checking Browser Compatibility 26

Adding Voice and Video 28

Adding a Preview Window 28

Making a Call 29

Receiving a Call 30

Enabling Local Media 32

Adding a Stream 32

The Size of the Video Window 32

© 2018 CaféX | Confidential Page 4

Ending a Call 33

Muting the Local Audio and Video Streams 33

Holding and Resuming a Call 33

Sending DTMF Tones 33

Handling Multiple Calls 34

Setting Video Resolution 34

Enumerating Possible Resolutions 34

Setting the Resolution 35

Setting an Arbitrary Video Resolution 35

Setting the Frame Rate 35

Input Device Switching 36

Getting the Input Devices 37

Handling User Media Issues 38

Monitoring Call State 38

Adding Application Event Distribution 39

Creating a Topic 39

Subscribing to a Topic 39

Unsubscribing from a Topic 41

Publishing Data to a Topic 41

Deleting Data from a Topic 42

Sending a Message to a Topic 43

Adding Floor Control 44

Requesting the Floor 44

The Floor Request is Accepted 44

© 2018 CaféX | Confidential Page 5

The Floor Request is Rejected 44

Releasing the Floor 45

Canceling a Floor Request 45

The Floor is Taken from the Client 45

Another User is Granted the Floor 45

Another User Releases the Floor 46

A Simple Floor Control Client Program 46

Floor Control and HA Cluster Failover 47

Ending the Session 47

Responding to Network Issues 47

Reacting to Network Loss 48

Network Quality Callbacks 49

Creating an iOS Client Application 50

Setting up a Project 50

iOS 9 and Xcode 7 53

Initializing the ACBUC Object 53

Adding Voice and Video 54

Requesting Permission to use the Microphone and Camera 54

Making a Call 55

Receiving a Call 56

Receiving Calls when the Client is in Background or Suspended Mode 57

Video Views and Preview Views 57

Ending a Call 58

Muting the Local Audio and Video Streams 58

© 2018 CaféX | Confidential Page 6

Holding and Resuming a Call 58

DTMF Tones 59

Handling Multiple Calls 59

Setting Video Resolution 59

Enumerating the Possible Resolutions 59

Setting the Resolution 61

Setting the Frame Rate 61

Dial Failures 61

Handling Device Rotation 62

Switching between the Front and Back cameras 62

Application Background Mode 62

Monitoring the State of a Call 63

Adding Application Event Distribution 64

Creating and Connecting to a Topic 65

didConnectWithData 65

Disconnecting from a Topic 66

topicDidDelete 66

Publishing Data to a Topic 66

didUpdateWithKey 67

Deleting Data from a Topic 67

Sending a Message to a Topic 67

didReceiveMessage 67

Threading 68

Self-Signed Certificates 68

© 2018 CaféX | Confidential Page 7

Testing IPv6 68

Bluetooth Support 70

Starting and Stopping ACBAudioDeviceManager 70

Setting the Preferred Device 71

Setting the Default Device 71

Listing Available Devices 72

Responding to Network Issues 73

Reacting to Network Loss 73

Reacting to Network Changes 73

Network Quality Callbacks 74

Creating an Android Client Application 75

Setting up a Project 75

Creating the UC Object 76

Adding Voice and Video 77

Making a Call 77

Receiving a Call 78

Video Views and Preview Views 79

Ending a Call 80

Muting the Local Audio and Video Streams 81

Holding and Resuming a Call 81

Sending DTMF Tones 82

Handling Multiple Calls 82

Setting Video Resolution 82

Enumerating the Possible Resolutions 82

© 2018 CaféX | Confidential Page 8

Setting the Resolution 83

Setting the Frame Rate 83

Handling Device Rotation 83

Switching between the Front and Back Cameras 84

Application Background Mode 84

Monitoring the State of a Call 84

Adding Application Event Distribution 86

Creating and Connecting to a Topic 86

Topic Expiry 87

onTopicConnected 87

Unsubscribing from a Topic 88

onTopicDeletedRemotely 88

Publishing Data to a Topic 89

onTopicUpdated 89

Deleting Data from a Topic 89

Sending a Message to a Topic 90

onMessageReceived 90

Self-Signed Certificates 90

Bluetooth Support 91

Starting and Stopping AudioDeviceManager 92

Using the Listener 92

Setting the Audio Device 93

Setting the Default Device 94

Listing Available Devices 95

© 2018 CaféX | Confidential Page 9

Responding to Network Issues 95

Reacting to Network Loss 96

Reacting to Network Changes 96

Network Quality Callbacks 97

Creating an OSX Client Application 98

Setting up a Project 98

Initializing the ACBUC Object 99

Adding Voice 100

Making a Call 100

Receiving a Call 100

Video Views and Preview Views 101

Muting the Local Audio Stream 101

Holding and Resuming a Call 102

DTMF Tones 102

Handling Multiple Calls 103

Monitoring the State of a Call 103

Threading 104

Self-Signed Certificates 104

Responding to Network Issues 105

Reacting to Network Loss 105

Reacting to Network Changes 106

Creating a Windows Client Application 107

Setting up a Project 107

Initializing the UC and Starting the Session 108

© 2018 CaféX | Confidential Page 10

Adding Voice and Video 109

Adding a Preview Window before a Call is made 109

Making a Call 109

Receiving a Call 110

Displaying Video 110

Muting Local Audio and Video Streams 111

Holding and Resuming a Call 112

Sending DTMF Tones 112

Handling Multiple Calls 112

Setting Video Resolution 113

Monitoring the State of a Call 113

Adding Application Event Distribution 114

Creating a Topic 115

OnTopicConnected 115

Publishing Data to a Topic 116

OnTopicUpdated 116

Deleting Data from a Topic 117

Sending a Message to a Topic 117

OnMessageReceived 117

Disconnecting from a Topic 117

OnTopicDeletedRemotely 118

Responding to Network Issues 118

Reacting to Network Loss 118

Network Quality Callbacks 119

© 2018 CaféX | Confidential Page 11

Creating a Windows .NET Client Application 120

Setting up a Project 120

Initializing the CLI_UC and Starting the Session 121

Adding Voice and Video 122

Adding a Preview Window before a Call is made 122

Making a Call 122

Receiving a Call 123

Displaying Video 123

Muting Local Audio and Video Streams 124

Holding and Resuming a Call 125

Sending DTMF Tones 125

Handling Multiple Calls 125

Setting Video Resolution 125

Monitoring the State of a Call 126

Adding Application Event Distribution 127

Creating a Topic 127

OnTopicConnected 128

Publishing Data to a Topic 129

OnTopicUpdated 129

Deleting Data from a Topic 129

Sending a Message to a Topic 129

OnMessageReceived 130

Disconnecting from a Topic 130

OnTopicDeletedRemotely 130

© 2018 CaféX | Confidential Page 12

Responding to Network Issues 131

Reacting to Network Loss 131

Network Quality Callbacks 131

Appendix: Error Codes 133

© 2018 CaféX | Confidential Page 13

Creating the Web Application

See the FCSDK Architecture Guide for details on how the Web Application fits into the Fusion Client

SDK architecture.

Before doing anything, the FCSDK enabled application needs to create a session on the server; the server

exposes a session creation REST API for the purpose. Although it would be possible in principle to dispense

with the Web Application, and expose that API directly to the applications, such an approach has serious

drawbacks:

n There is no authentication of users - any application which presents a validWeb Application ID to the

REST service is able to create or destroy a session.

Note: The Web Application ID is a unique text string which identifies the Web Application to the

Web Gateway, and confirms that the Web Application is allowed to create sessions. The Web Applic-

ation ID must correspond with one on the list of acceptable Web Application IDs configured on the

Web Gateway (see FCSDK Administration Guide).

n There is no authorization of users - an application which can create a session can create a session with

any or all permissions, whereas you may want some users to have more access to FCSDK facilities

than others.

The recommended approach is to create a Web Application which users can log in to with a user name and

credentials, and which will return the session token to authenticated users. The Web Application will:

n Authenticate users and determine the services available to them

n Create sessions on the Web Gateway

n End sessions on the Web Gateway

Communication with the Client

While the Fusion Client SDK defines the way in which both the Web Application and client communicate

with the Web Gateway, it does not restrict how the Web Application communicates with the client.

The Web Application needs to be able to pass the token containing the session ID created by the Web Gate-

way to the client. However, whether this is done via a REST API, HTML, or any other method is up to you.

© 2018 CaféX | Confidential Page 14

Authenticating the User

How the Web Application authenticates the user is entirely in control of the application itself. The sample

application provided with FCSDK uses a particularly simple scheme, in which an XML file which is deployed

to the server contains the users and their capabilities (look at this in conjunction with the sample code):

1. The sample application's login servlet receives an HTTP request containing a user name and password,

either as part of a JSON body, or as parameters to the request

(LoginServlet.handleLoginFromWebpage and

BaseLoginServlet.getUserLoginSessionID).

2. getUserLoginSessionID gets the capabilities of the user

(LoginHandler.getUserFromLoginCredentials).

n getUserFromLoginCredentials parses the request for user name and password

(LoginRequestParser.parse).

n getUserFromLoginCredentials checks the password and returns the capabilities of the

user (LoginHandler.getAuthorizedUser)

3. getUserLoginSessionID creates a session for the user

(LoginHandler.createSessionForUser) and returns the session token to the FCSDK applic-

ation.

It's easy to see how this could be adapted to a scheme where the information about each user was held in a

secure database, or on an LDAP server.

Creating the Session

After it has authenticated the user, the Web Application sends a POST request to the Web Gateway. The

request describes the requested capabilities for the session, such as:

n Can the user make voice and video calls?

n Does the user have AED (Application Event Distribution) capabilities?

© 2018 CaféX | Confidential Page 15

The request also contains the Web Application ID and some further information (not relating to the ses-

sion's capabilities) about the session itself.

The message must be POSTed to one of the following URLs:

n http://<fas address>:8080/sessions for non-secure communications

n https://<fas address>:8443/sessions for secure communications

Note: As the message contains the Web Application ID, CaféX Communications recommends that this

transaction is performed over HTTPS for security.

The content type of the POST message should be application/json, and the body must be formatted as

a JSON string:

{

"timeout":1,

"webAppId":"WEBAPPCSDK-A8C1D",

"allowedOrigins":["example.com"],

"urlSchemeDetails":

{

"secure":true,

"host":"wg.example.com",

"port":"8443"

},

"voice":

{

"username":"jbloggs",

"displayName":"Joseph",

"domain":"example.com",

"inboundCallingEnabled":true,

"allowedOutboundDestination":"sip:user@example.com",

"auth":

{

"username":"1234",

"password":"123456",

"realm":"example.com"

}

},

"aed":

{

"accessibleSessionIdRegex":".*",

"maxMessageAndUploadSize":"5000",

"dataAllowance":"5000"

© 2018 CaféX | Confidential Page 16

},

"uuiData":"0123456789ABCDEF"

}

where the members are:

Member Description

timeout The timeout period for the session, defined in minutes. If omitted, this is set to

1 by default.

Note: The valid timeout range is 1-15 minutes, setting it to any other value out-

side of this range will cause errors.

webappid The unique ID that the web app passes to the Gateway to identify itself. The ID

must be a minimum of 16 characters in length, and must also have been con-

figured on the Gateway itself.

allowedOrigins This represents the origins from which cross realm JavaScript calls are permitted.

If null or empty, there is no restriction. This is a comma separated list.

urlSchemeDetails The connection details the Fusion Client SDK client library is configured to

use to the Web Gateway. This is an object with three other settings. If these

details are not provided, the default setting for each option is used:

n secure

If true, connects using secure WebSockets (wss). The default value is

false, for non-secure (ws).

n host

Specifies the host name or IP address for the WebSocket to connect to. If

not provided, the client uses the <web_gateway_address> that the

Web Application used to issue the HTTP POST request. Typically, this

value is set when a NAT firewall is placed between the clients and the

gateway. This value should be set to the external host name or IP

address.

n port

Specifies the port that the WebSocket connects to. The default is set to

© 2018 CaféX | Confidential Page 17

Member Description

8443 if secure is true or 8080 if secure is false.

voice The details regarding voice and video calling. If omitted, voice and video calling

are disabled. It is an object with the following members:

n username

The SIP user name, as would appear in the From header

n displayName

The SIP display name, as it would appear in SIP messages. If this is omit-

ted, no display name is set for the user.

n domain

The corresponding SIP domain.

n inboundCallingEnabled

Set inbound calling parameters to disable inbound calling. If omitted,

inbound calling is enabled by default.

Note: If inboundCallingEnabled is set to true, a SIP REGISTER

request is sent to the SIP network; therefore, a corresponding user must

exist on the SIP network. This user's credentials should be entered in the

auth section (see below).

If inboundCallingEnabled is set to false, a SIP REGISTER is not

sent.

n allowedOutboundDestination

This can be a single destination, for example sip:bob@example.com or

can be the string all to allow unrestricted calling.

n auth

The authentication credentials for voice and video calling. You can omit

this section if the gateway is a trusted entity in the SIP infrastructure;

however, you omit it and the SIP is challenged, the registration fails.

© 2018 CaféX | Confidential Page 18

Member Description

n username

The user name you would register with. This is a mandatory set-

ting for voice calling.

n password

The password used for registrations. This is a mandatory setting

for voice calling.

n realm

The realm used for registrations.

Note: The username used in the From header can be the same as the

username used for authentication. The domain specified in the From

header can be the same as the realm used for authentication.

aed The details related to AED. If omitted, AED functionality is disabled. It is an

object with the following members:

n accessibleSessionIdRegex

A Java regular expression which defines the AED topic names which this

session can subscribe to. The user will not be able to subscribe to any

AED topic which does not match this expression.

n maxMessageAndUploadSize

Limits the size of message (in bytes) a user can send, and the size (in

bytes) of an individual data upload.

n dataAllowance

The total data (in bytes) a user can have stored at any time, on all topics

they are subscribed to.

uuiData If provided, this string is used to populate SIP INVITE and BYE messages sent

by the user with a User-to-User header. As an example, suppose the value

of this parameter is ABCD. The FCSDK adds the header User-to-User:

© 2018 CaféX | Confidential Page 19

Member Description

ABCD. If omitted, no User-to-User header is added to SIP messages.

Examples of valid uuiData values are:

abcdef;encoding=hex

abcdefghijk;encoding=blah;paramname=paramvalue

"abcdefghijk";encoding=blah

To be a valid JSON string for creating a session, the JSON must obey the following rules:

n The webAppId must always be included.

n At least one of voice or aed must be included.

n If voice is included, then it must include the username and domain.

Examples

See the following examples of POST messages for examples of how to start sessions with specific cap-

abilities:

Voice and Video Calling

For voice and video calling, using all the default settings:

{

"webAppId":"WEBAPPCSDK-A8C1D",

"voice":

{

"username":"jbloggs",

"displayName":"Joseph",

"domain":"example.com"

}

}

Voice and Video Calling with URL

For voice and video calling, specifying URL scheme details and an allowed origin:

{

"webAppId":"WEBAPPCSDK-A8C1D",

"allowedOrigins":["example.com"],

"urlSchemeDetails":

{

"secure":true,

© 2018 CaféX | Confidential Page 20

"host":"wg.example.com",

"port":"8443"

},

"voice":

{

"username":"jbloggs",

"displayName":"Joseph",

"domain":"example.com",

"inboundCallingEnabled":true,

"allowedOutboundDestination":"sip:user@example.com",

"auth":

{

"username":"1234",

"password":"123456",

"realm":"example.com"

}

}

}

AED Only

For a client application with AED capabilities only:

{

"webAppId":"WEBAPPCSDK-A8C1D",

"aed":

{

"accessibleSessionIdRegex":".*",

"maxMessageAndUploadSize":"5000",

"dataAllowance":"5000"

}

}

Using the UUI

For a client application which passes a UUI in the SIP INVITE:

{

"webAppId":"WEBAPPCSDK-A8C1D",

...

"uuiData":"53656e7369746976652044617461;encoding=hex"

}

You might use this technique to put some sensitive data in the User-to-User header which the con-

sumer application does not know (or at least, does not transmit). When the consumer application requests

© 2018 CaféX | Confidential Page 21

a session token, the Web Application puts the sensitive data, known only to itself, in the uuiData element

of the JSON which it sends to the session token servlet. The Web Gateway associates that data with the

session it creates. When the consumer application makes a call to a SIP device using that session, the Web

gateway populates the User-to-User header of the INVITE which it sends to the SIP device with the

sensitive data. How the SIP device uses the data is a matter for the device itself, but it could be an authen-

tication token which allows it to set up the call.

If the data which needs to be sent to the SIP device is not sensitive, the consumer application can send it to

the Web Application, and the Web Application can copy it to the uuiData element of the JSON it uses to

create the session token.

JSON Response

When it has created the session, the Web Gateway responds with a JSON string containing configuration

data for the client, which includes a session ID for the new session; the Web Application must pass this

token to the client application. If the JSON submitted to the Web Gateway contains properties with names

that are unknown to the Gateway, the response contains an unknownProperties object with those prop-

erties; it is omitted if there are no unknown properties:

{

"sessionid" : "<very long string..>",

"unknownProperties" : ["<propname1>","<propname2>",...]

}

Ending the Session

The Web Application should end the session on the Web Gateway when it knows that it is no longer

needed. The sample application included with FCSDK does this in response to an explicit request from the

FCSDK application to a logout servlet, but it could happen in response to a timer firing, or the call ending.

To end the session, the Web Application needs to send an HTTP DELETE request containing the session ID

to the Web Gateway at one of the following URLs:

n http://<fas address>:8080/gateway/sessions/session/id/<session-id> for non-secure com-

munications

n https://<fas address>:8443/gateway/sessions/session/id/<session-id> for secure com-

munication

© 2018 CaféX | Confidential Page 22

Note:

n The response for the DELETE operation will be 204 No Content. This is conventional in REST ser-

vices, as nothing is returned in the response.

n This tears down any calls the user has active and invalidates the session.

© 2018 CaféX | Confidential Page 23

Creating a Browser Client Application

Fusion Client SDK enables you to develop browser-based applications offering users the following meth-

ods of communication:

n Voice and video calling

n Application Event Distribution

You can also enhance any existing browser-based applications with these features.

Fusion Client SDK provides you with a network infrastructure and JavaScript API which make use of

technologies such as WebRTC to integrate seamlessly with your existing SIP infrastructure. The

JavaScript API is delivered with its own reference javadocs available at

<installation_directory>/Core_SDK/JavaScript_SDK/jsdoc.

For more detailed discussion of the Fusion Client SDK solution, refer to FCSDK Overview Guide.

Note: Fusion Client SDK is delivered with a sample application. This is available at <installation_

directory>/Core_SDK/Sample_Source. All samples featured in this guide can be located there.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

In your development environment, start a new project and create the page to use to deliver your client

application. The Fusion Client SDK JavaScript SDK files were installed when you installed the Web Gate-

way, so will be automatically available to any client application which accesses the Web Gateway itself.

Each page which uses the JavaScript API will need to include the following script tags:

<script src="http://<fas address>:<port>/gateway/scripts/adapter.js"/>

<script src="http://<fas address>:<port>/gateway/scripts/csdk-sdk.js"/>

where <fas address> is the IP address or host name of the FAS on which you have installed the Web

Gateway, and <port> is the port to connect to to access it (usually 8080 for http). If the Gateway is set

up for secure access only, use https instead of http, and 8443 for the port.

© 2018 CaféX | Confidential Page 24

Note: csdk-sdk.js implements voice and video calling and AED; if you only want to implement a subset

of this functionality, you can include only the script for the functionality you require:

n csdk-phone.js for voice and video calling (including floor control).

n csdk-aed.js for AED.

Important: If you are using a subset of functionality, ensure that you include csdk-common.js after the

modules you require. If you are using only AED, and want to avoid prompting the user for access to their

microphone and camera, ensure that you do not include csdk-phone.js (either directly or indirectly).

When the JavaScript runs, it creates an object called UC in the global namespace.

Initializing the SDK

To set up all the functionality to which the user has access, you must obtain a session ID from your Web

Application (see the Creating the Web Application section on page 14), and initialize the UC object by

calling the start method on the UC object with it.

To confirm that UC has initialized correctly, you can use the onInitialised method. To determine

whether UC has failed to initialize, you should implement onInitialisedFailed.

//Get hold of the sessionID however your app needs to

var sessionID = getSessionID();

// Set up STUN server list

var stunServers=[{"url": "stun:stun.l.google.com:19302"}];

UC.onInitialised = function() {

//Register listeners on UC

UC.phone.onIncomingCall = function(call) {

// perform tasks associated with incoming call

};

...

};

UC.onInitialisedFailed = function() {

...

};

//Start UC session using the Session ID and stun server list

UC.start(sessionID, stunServers);

© 2018 CaféX | Confidential Page 25

Once the UC object has initialized, the application can use its phone and aed objects to make and receive

calls, or to access any other FCSDK functionality. Note that the above code assigns the

phone.onIncomingCall function only in the onInitialised callback; this is typical - the phone and

aed objects can only be used inside the onInitialised callback, or after it has been received.

Note:

n STUN servers are not necessary if the Gateway is not behind a firewall, so that Network Address

Translation is not needed; in this case the stunServers array can be empty. You can provide your

own STUN server instead of the public Google one above; and you can provide more than one in the

array, in which case FCSDK tries them in sequence until it finds a working one.

n Your Web Application may fail to return a session ID (for instance, if it cannot authenticate the

user). In these situations the user should be logged out and needs to log in again to start a new ses-

sion (see the Creating the Session section on page 15).

Checking Browser Compatibility

UC.checkBrowserCompatibility(pluginInfoCallback) checks the browser for compatibility with

UC. This function is asynchronous - the function pluginInfoCallback is called to return the inform-

ation.

pluginInfoCallback is called with an argument (pluginInfo), which is a JavaScript object with the

following members:

Member Values

pluginRequired n true

If the browser needs a plugin to operate correctly

n false

Otherwise

status n zero length string

If pluginRequired is false

n installRequired

If the plugin is missing

© 2018 CaféX | Confidential Page 26

Member Values

n upgradeRequired

If the plugin is present but a new version is needed

n upgradeOptional

If the plugin is present and will work, but a newer version is available

n upToDate

If the plugin is present and is the latest available version

restartRequired n true

If a plugin is installed or upgraded, the browser will need to be restarted

n false

The browser will not need to be restarted, or no plugin is needed

installedVersion n none

When pluginRequired is false or the plugin is missing

n string in form x.y.z

Where x, y, and z are integers

minimumRequired n none

When pluginRequired is false or the plugin is missing

n string in form x.y.z

Where x, y, and z are integers. This is the minimum version of the plu-

gin which will work correctly with the version of FCSDK in use.

latestAvailable n none

When pluginRequired is false or the plugin is missing

n string in form x.y.z

Where x, y, and z are integers. This is the latest version of the plugin

available on the server.

© 2018 CaféX | Confidential Page 27

Member Values

pluginUrl n zero length string

If pluginRequired is false

n URL string

The URL points to the location of the latest version of the plugin on the

server (the version indicated by latestAvailable).

UC.start assumes the presence of a correct browser plugin (if one is required). If a plugin is required but

is not present, an error may occur. If the plugin information indicates that a plugin or plugin update is

needed, the application should prompt the user to install it from the pluginUrl provided. See the sample

application's entry.js file for the way this can be done.

Note: The user may not have permission to install plugins. In this case, it is the responsibility of their IT

administrator to install the correct plugin, and the application should inform the user of the problem.

Adding Voice and Video

All of the functions required to develop applications for browser-based voice and video are supported by the

UC.phone object. This is an instance of the Phone class.

Adding a Preview Window

If you want to add a preview window (a window which displays the video which is being sent to the other

endpoint) before a call is established, you can call the UC.phone.setPreviewElement function. An

appropriate time to do this is in the UC.onInitialised callback:

UC.onInitialised = function() {

UC.phone.setPreviewElement(document.getElementById('local'));

};

Alternatively, you can wait until you have a call (see the Making a Call section on the next page and

the Receiving a Call section on page 30) before setting the preview element:

var call;

call = UC.phone.createCall(numberToDial);

call.onInCall = function() {

call.setPreviewElement(document.getElementById('local'));

}

© 2018 CaféX | Confidential Page 28

Making a Call

The phone object provides a createCall method, to which your client application should provide the

number to contact. This returns a new Call object, on which you can set callbacks and call the dial

method, which initiates a call to the destination specified for the call. The dial method takes two string

parameters:

n withAudio - to define the direction of the audio stream in the call.

n withVideo - to define the direction of the video stream in the call.

For both parameters, the possible values are:

n enabled – for 2 way media

n onlyreceive – for 1 way media

n disabled – for no media

The default for both parameters is enabled, which provides backward compatibility and convenience, as

the application need only call dial to establish 2 way communication on both voice and video (considered

the normal case).

Note: call.dial() must only be called after the application has initialized the SDK and received the

UC.onInitialised callback (see the Initializing the SDK section on page 25).

var call;

//A method to call from the UI to make a call

function makeCall(numberToDial) {

//Create a call object from the framework and save it somewhere

call = UC.phone.createCall(numberToDial);

call.onInCall = function() {

// Show video stream(s) in elements

call.setPreviewElement(previewVideoElement);

call.setVideoElement(remoteVideoElement);

};

//Set what to do when the remote party ends the call

call.onEnded = function() {

alert("Call Ended");

© 2018 CaféX | Confidential Page 29

};

//Set up what to do if the callee is busy, inform your user etc

call.onBusy = function() {

alert("The callee was busy");

};

//Dial the call

call.dial();

};

//A method to call from the UI to end a current call

function endCall() {

call.end();

};

In order to use the media in the call, the the application must provide a div element on the page where it

will display remote video from the other endpoint, using the setVideoElement function. The onInCall

callback is a suitable place to do this; in the above code, it also calls setPreviewElement to display a

copy of the local video (which is being sent to the far end).

We recommend that the application should override the following error methods to inform the user of call

status, in the event that any issues occur when making a call:

n onBusy

n onCallFailed

n onDialFailed

n onGetUserMediaError

n onNotFound

n onTimeout

As shown above, to end the call the client should call the Call object’s end method.

Receiving a Call

Overriding onIncomingCall allows FCSDK to notify the client application when it receives a call. The

notification has a Call object as a parameter; the Call object contains details of the call in progress and

some key methods which should be overridden.

© 2018 CaféX | Confidential Page 30

In a simple application, showing some user feedback when this object is called enables a user to receive a

call.

var call;

// Define what to do on incoming call

UC.phone.onIncomingCall = function(newCall) {

var response = confirm("Call from: " + newCall.getRemoteAddress() +

" - Would you like to answer?");

if (response === true) {

// What to do when the remote party ends the call

newCall.onEnded = function() {

alert("Call Ended");

};

// Remember the call to enable ending later

call = newCall;

// Specify where preview and remote video should be played or
presented.

call.setPreviewElement(previewVideoElement);

call.setVideoElement(remoteVideoElement);

// Answer

newCall.answer();

} else {

// Reject the call

newCall.end();

}

};

// A method to call from the UI to end the call

function endCall() {

call.end();

}

To answer the call, your client application should call the Call object’s answer method.

The answer method takes two string parameters:

n withAudio - defines the direction of the audio stream in the call.

n withVideo - defines the direction of the video stream in the call.

For both parameters, the possible values are:

n enabled – for 2 way media

n onlyreceive – for 1 way media

© 2018 CaféX | Confidential Page 31

n disabled – for no media

The default for both parameters is enabled, which provides backward compatibility and convenience, as

the application need only call answer to establish 2 way communication on both voice and video (con-

sidered the normal case).

To reject the call, your client application should call the Call object’s end method.

Enabling Local Media

In order to send local media to the Web Gateway, the application must call setLocalMediaEnabled. The

setLocalMediaEnabled() method supports two boolean parameters:

n enableVideo - enables a stream for the user’s camera or webcam.

n enableAudio - enables a stream from the user’s microphone.

The setLocalMediaEnabled() method also supports a single parameter JavaScript object which con-

tains both the audio and video capabilities. This object contains two boolean parameters, audio and

video, which can be set separately:

{"audio": true, "video": false}

Adding a Stream

To enable the client you develop to play any audio and video provided by the framework, you must call

Call.setVideoElement, passing in the element that is be used to display the video and the ID of the

stream to be displayed:

call.onInCall = function() {

call.setVideoElement(document.getElementById('remote'), 'streamid');

}

The stream ID is optional, and defaults to 'main' if not provided. The application should only need to spe-

cify it if the framework is providing more than one video stream; in that case, the application should know

what those stream IDs are, and may give the user some way to switch between them.

The Size of the Video Window

In IE, the element which displays the video (whether remote or local) needs to have a minimum size; in IE

the default height is 0, and it does not expand to accommodate the video stream when that starts. You can

correct this with a CSS entry:

© 2018 CaféX | Confidential Page 32

#remote > *, #local > * {

min-height: 500px;

width: 100%;

}

Note: You need to set the elements that are immediate children of the remote and local elements

(assuming that remote and local are the elements which you will pass to setVideoElement and

setPreviewEement); FCSDK will add a child to the remote and local elements, with the same size as

its parent, and it is that child which will display the video. This applies to all of

Call.setPreviewElement, Phone.setPreviewElement, and Call.setVideoElement.

Ending a Call

If the user ends the call, the client application should call the Call object’s end method.

In order to detect that the remote party has ended the call, the client application needs to override the Call

object’s onEnded callback method.

Muting the Local Audio and Video Streams

During a call, the application can mute and unmute the local audio and video streams separately. Muting

the stream stops that stream being sent to the remote party. The remote party's stream continues to play

locally, however.

To mute either stream, use the setLocalMediaEnabled(enableVideo, enableAudio) method of

the Call object to toggle the audio and video streams. See the Enabling Local Media section on the pre-

vious page.

Holding and Resuming a Call

If the user puts a call on hold, the client application should call the call object’s hold method.

To resume a call that currently on hold, the client application should call the call object’s resume

method.

Sending DTMF Tones

Your application can send DTMF tones on a call by using the Call object's sendDtmf function:

call.sendDtmf("#123*", true);

© 2018 CaféX | Confidential Page 33

The first parameter is a string representing the tones to send. Valid values for the tones are those char-

acters conventionally used to represent the standard DTMF tones: 0123456789ABCD#*. A comma char-

acter inserts a two-second pause into a sequence of tones. Alternatively, to send a single tone, the

application can pass in a number from 0 to 9.

The second parameter should be true if you want the tones to also be played back locally, so that they are

audible to the user.

Handling Multiple Calls

Applications developed with Fusion Client SDK JavaScript SDK support multiple simultaneous calls:

n To make additional calls while another call is in progress, the client application would use the

UC.phone.createCall(numberToDial) method (see the Making a Call section on page 29).

n To receive incoming calls while another call is in progress, the UC.phone.onIncomingCall method

should be triggered (see the Receiving a Call section on page 30).

Note: Multiple simultaneous calls are not supported on the IE or Safari plugins.

Setting Video Resolution

The Fusion Client SDK JavaScript SDK supports configuring the captured, and therefore sent, video res-

olution for video calls. The application can select one of a set of video resolutions, and apply it to the cap-

ture device. It can also configure the frame rate for capture. When it specifies a resolution and frame rate,

FCSDK makes every effort to match those values where hardware allows.

Note: The new resolution and frame rate only take effect for subsequent calls, and do not affect calls that

are in progress.

Enumerating Possible Resolutions

The application can get a list of possible resolutions from the Phone object using the videoresolutions

array:

var lowestResolution = UC.phone.videoresolutions[0];

These values are an enumeration which list all supported resolutions:

© 2018 CaféX | Confidential Page 34

Enumeration Value Width Height

videoCaptureResolution174x144 174 144

videoCaptureResolution352x288 352 288

videoCaptureResolution320x240 320 240

videoCaptureResolution640x480 640 480

videoCaptureResolution1280x720 1280 720

videoCaptureResolution1920x1080 1920 1080

Note: When you set the resolution, the device's camera may not support that resolution. In that case the

browser provides a different resolution, but exactly what resolution will depend on the browser being used.

Setting the Resolution

The application can set the captured video resolution using the

setPreferredVideoCaptureResolution(resolution) method of the Phone object. The value sup-

plied must be one of the video resolutions presented in the videoresolutions array (see the Enu-

merating Possible Resolutions section on the previous page):

var hd720p = UC.phone.videoresolutions.videoCaptureResolution1280x720;

UC.phone.setPreferredVideoCaptureResolution(hd720p);

Setting an Arbitrary Video Resolution

There may be circumstances when you want to set a specific video resolution not listed above. You can do

this by specifying a JavaScript object which contains the width and height in pixels:

UC.phone.setPreferredVideoCaptureResolution({width:400,height:200});

The device must be able to support the resolution that you specify; if not, the browser provides a default

resolution. Currently, for example, Google Chrome defaults to a resolution of 640x480 if the requested res-

olution is not available.

Setting the Frame Rate

The application can set the captured video frame rate using the setPreferredVideoFrameRate(rate)

method of the Phone object.

UC.phone.setPreferredVideoFrameRate(30);

© 2018 CaféX | Confidential Page 35

Note: If the hardware cannot manage the preferred frame rate, the browser may interpolate to get as close

to the desired frame rate as possible, or it may choose the closest frame rate which the hardware supports.

Achieving the preferred frame rate cannot be guaranteed.

Input Device Switching

Often, a user has more than one input device attached. This is commonly the case with audio input devices

(microphones), and is becoming increasingly common with video input devices (front and back cameras on

tablets, for example). An application can set its preferred audio and video devices using the functions:

UC.phone.setPreferredAudioInputId(id);

and

UC.phone.setPreferredVideoInputId(id);

before a call starts. The id parameter is a string which uniquely identifies the input device; it may also be

'default', which allows the browser to choose the input device itself. To find the ID of a particular

device, you must list all the input devices, and use the ID of one of them; see the Getting the Input

Devices section on the next page.

Note: You can set the preferred audio or video ID to a value which does not correspond to an input device.

n If you call Call.dial (see the Making a Call section on page 29) while the preferred media ID is

invalid in this way, FCSDK calls onGetUserMediaError, followed by onCallFailed.

n If you call Call.answer on a received call (see the Receiving a Call section on page 30) while

the preferred media ID is invalid, FCSDK also calls onGetUserMediaError, followed by

onCallFailed.

n If you make or receive a call as audio-only or video-only using the input parameters withAudio and

withVideo of dial and answer, the preferred input ID of the inactive media may be invalid

without affecting the call.

The application can get the current preferred audio and video input devices using:

var id = UC.phone.getPreferredAudioInputId();

and

var id = UC.phone.getPreferredVideoInputId();

Initially, the browser prefers the default device, and the ID returned by these functions is 'default'; after

local media has been established, the functions return the actual ID of the currently preferred device.

© 2018 CaféX | Confidential Page 36

Getting the Input Devices

An application can receive a list of available input devices by implementing the onGetMediaDevices call-

back on the Phone object:

UC.phone.setOnGetMediaDevices(function(devices) {

...

});

The devices object contains two arrays, videoinputs and audioinputs, either of which may be

empty (if there are no local media devices of that type); each element of each array is an object which con-

tains a label and an id:

{

"videoinputs" : [

{

"label" : "Microsoft® LifeCam HD-3000 (045e:0779)",

"id" :
"c5cfe4b705510e08e43346e262e81bc26bb1207e5ca0f12e0d45750099740c37"

},

...

],

"audioinputs" : [

{

"label" : "Default",

"id" : "default"

},

{

"label" : "Built-in Microphone",

"id" :
"77c7f2e78a889bd84a83e0df6cf76699338dde84246d342469891e91e3711cb4"

},

...

]

}

The label element is a moderately informative description of the device; id is the value to be used as a

parameter for the setPreferredAudioId and setPreferredVideoId functions. The callback func-

tion will be called more than once because the device labels change after local media becomes established.

Before that, the labels are uninformative, such as Mic 1 and Cam 2.

© 2018 CaféX | Confidential Page 37

Handling User Media Issues

When a problem occurs obtaining the user media (microphone or camera) the Fusion Client SDK provides

three call backs on the Call object:

n onOutboundAudioFailure is called if there is a problem obtaining audio media (such as if the

microphone is disabled or unplugged), but the call can continue without it. The application can

decide whether to continue or end the call when it receives this callback.

n onOutboundVideoFailure is called if there is a problem obtaining video media (such as if the cam-

era is disabled or unplugged), but the call can continue without it. The application can decide

whether to continue or end the call when it receives this callback.

n getUserMediaError is called when there is a terminal user media problem which has resulted in

the call ending (for instance, if the user has denied permission to both the microphone and camera).

Note: FCSDK will only call the onOutboundAudioFailure and onOutboundVideoFailure methods if

the relevant media type was requested when making the call; the timing of these method callbacks will

vary depending on the browser.

Monitoring Call State

During call setup, the call transitions through several states, from the initial setup to being connected with

media available (or failure). You can implement callbacks to get notifications of the transitions to some of

these states, in order to provide feedback to the user or to take some other action.

The following table gives the available callbacks, on Phone and Call objects:

Callback Meaning

Phone.onIncomingCall An incoming call is alerting (ringing). The callback provides the Call object

as a parameter. See the Receiving a Call section on page 30.

Call.onRinging An outgoing call is ringing at the remote end

Call.onPending The call is connected, and waiting for media

Call.onInCall The call is fully set up, including media

Call.onBusy The dialed number is busy

© 2018 CaféX | Confidential Page 38

Callback Meaning

Call.onNotFound The dialed number is unreachable or does not exist

Call.onTimeout There was no response from the dialed number within the network’s timeout

Call.onDialFailed Dialing the number failed. This may be due to several reasons, such as no

media broker being available, or the capacity of the network being reached.

The callback has an error code parameter which may give more information.

Call.onCallFailed The call has errored. This may be due to no media, or a network failure, or

some other reason. The callback supplies an error code as a parameter,

which may give more information.

Call.onEnded The call has ended

Adding Application Event Distribution

All of the functions required to develop applications for browser-based Application Event Distribution

(AED) are on the UC.aed object. The application can subscribe to a topic, and can send data (consisting of

key-value pairs) or messages (simple text) to that topic, and have all other subscribers to that topic see the

data and messages.

Creating a Topic

To create a topic, the client application can call:

UC.aed.createTopic(topic);

where topic is a unique string identifier for the topic. This method call returns a Topic object.

Subscribing to a Topic

After it has created the topic, the client application subscribes to it by calling:

topic.connect(timeout);

This method call triggers one of the following events on the client:

n onConnectSuccess (data[])

n onConnectFailed

© 2018 CaféX | Confidential Page 39

The onConnectSuccess callback includes an array of data objects representing all the existing data (as

key-value pairs) on the topic. Each object in the data array has the following members:

Member Description

key Data's key

value Data's value

version A number indicating the data's version relative to other values that have been sent. Later

versions have higher values.

deleted Whether the data for this key was deleted. If this is true, value may be null or

undefined.

Note: The key and value elements of the data object must be strings.

Once it receives the onConnectSuccess callback, the application may receive onTopicUpdate noti-

fications. onTopicUpdate is fired each time anyone connected to the topic updates the topic's data or

sends a message to it. The callback passes a JSON topic object which contains details of the new data

update or message in the following format:

{

"type": "topic",

"name": "Pension",

"data": [

{"key":"dataKey", "value":"dataValue", "version":"0"},

{...},

{...},

...

],

"message": "This my message!",

"timeout": 120

}

This callback stops firing when the user unsubscribes from the topic (see the Unsubscribing from a

Topic section on the next page).

The following code sample shows the code required to subscribe to a topic:

UC.onInitialised = function() {

// create a topic

var topic = UC.aed.createTopic('topic');

topic.onConnectSuccess = function(data) {

© 2018 CaféX | Confidential Page 40

for (var i = 0; i < data.length; i++) {

// Process each data object

}

}

topic.onConnectFailed = function(message) {

alert(message);

}

topic.onTopicUpdate = function(key, data, version, deleted) {

// Store or display new data received

}

topic.connect();

};

Note: The application can compare the version of a data object with the version of a stored version of

the same data to ensure that an older version does not replace a newer one.

Unsubscribing from a Topic

The client can un-subscribe to a topic by calling

topic.disconnect(delete);

The delete argument is an optional boolean. If true, the topic is removed from the server (dis-

connecting all users from the topic); if false, only the current user will be disconnected from the topic.

If delete is true, this method call triggers one of the following events on the client:

n onDeleteTopicSuccess

n onDeleteTopicFailed

onTopicDeleted is called on all the clients subscribing to the topic when a topic is successfully deleted

from the server.

Publishing Data to a Topic

The client can publish a key-value item of data to a topic.

topic.submitData(key, value);

Both key and value should be strings. This method call triggers one of the following events on the client:

© 2018 CaféX | Confidential Page 41

n onSubmitDataSuccess

n onSubmitDataFailed

All clients which are subscribed to the topic receive an onTopicUpdate event.

The following code sample shows the steps required to create a topic and publish data to it:

UC.onInitialised = function() {

var topic = UC.aed.createTopic('topic');

topic.onConnectSuccess = function(data) {

// Submit new data when connected to topic

topic.submitData('key_one', 'value');

}

topic.onConnectFailed = function(message) {

alert(message);

}

topic.onSubmitDataSuccess = function(key, value, version) {

// Log success

}

topic.onSubmitDataFailed = function(key, value, message) {

// Notify user of failure

}

topic.onTopicUpdate = function(key, value, version, deleted) {

// Display new data to user

}

topic.connect();

};

Deleting Data from a Topic

The client can delete an item of data from a topic by specifying the item’s key.

topic.deleteData(topic, data_key);

This method call triggers one of the following events on the client which called deleteData:

n onDeleteSuccess

n onNotFound.

© 2018 CaféX | Confidential Page 42

If successful, all clients subscribed to the topic to receive an onTopicUpdate event (with the deleted

parameter set to true).

Sending a Message to a Topic

The client can send a message containing data to the topic:

topic.sendMessage(msg);

The msg parameter is free-form text.

This method call triggers one of the following events on the client:

n onSendMessageSuccess

n onSendMessageFailed

All clients subscribed to the topic receive an onMessageReceived event.

The following code sample shows the code required to send a message to all the clients subscribing to the

topic:

UC.onInitialised = function() {

topic.onConnectSuccess = function(data) {

// Send message as soon as topic is connected

topic.sendMessage(message_text);

}

topic.onSendMessageSuccess = function(message) {

// Log success

}

topic.onSendMessageFailed = function(message, errorMessage) {

alert(errorMessage + ", " + message);

}

topic.onMessageReceived(message) {

// Display message to user

}

topic.connect();

};

© 2018 CaféX | Confidential Page 43

Adding Floor Control

Note: The following section applies only to the Chrome browser.

When dialing into a multi-party conference on a conference server which supports Binary Floor Control

Protocol (BFCP), BFCP operations are available from the bfcp element of the Call object. The application

can request and release the floor, and can receive various callbacks that provide information about the

state of the conference. Other operations (including all BFCP Chair operations) are not supported.

Clearly, requesting the floor is not something which an application should do automatically, but it could do

it in response to a user action which indicates that the user wants to request the floor.

Requesting the Floor

A client requests the floor of the conference by calling call.bfcp.requestFloor(). Requesting the

floor does not mean that the floor is automatically granted, so the client application must wait until it

receives the onFloorRequestAccepted callback to indicate that it has been granted the floor. To do this,

it must first set the call.bfcp.onFloorRequestAccepted element to a function which is called when

the client receives the floor.

The Floor Request is Accepted

Once the floor request has been accepted, the client can stream video to the conference. Note that floor

requests are not necessarily granted immediately, or even very quickly - in a conference with several par-

ticipants, others may have requested the floor first, and the client may be put in a queue. The client must

be prepared to receive onFloorRequestAccepted at any time after it has made the floor request.

The Floor Request is Rejected

A floor request can fail, in which case the client receives one of the callbacks:

n onBFCPUnavailable

Indicates that no floor control is available for this call (either because the conference is not under the

control of a BFCP conference server, or because the client is not allowed to make BFCP requests).

© 2018 CaféX | Confidential Page 44

n onNoContentStreamAvailable

Indicates that the request was made before the client had any content stream to send to the con-

ference. In order to avoid this, a real client application would wait until it received a callback indic-

ating that a media stream was available before allowing the user to request the floor.

n onFloorControlEnded

This can mean a number of things, but if received instead of an onFloorRequestAccepted, it

indicates that the floor request has been denied by the conference server.

Releasing the Floor

Once the floor has been granted, the client application can stream video to the conference, and it can even-

tually to release the floor by calling call.bfcp.releaseFloor(). When it has released the floor, the cli-

ent receives an onFloorControlEnded callback.

Canceling a Floor Request

The client may also call releaseFloor to cancel a floor request which has not yet been granted. In this

case, the client receives an onFloorControlEnded callback instead of onFloorRequestAccepted.

However, since the floor control server may have already granted the floor to the client when it receives the

releaseFloor message canceling the floor request, the client may receive the

onFloorRequestedAccepted callback as well.

The Floor is Taken from the Client

The conference server may take the floor away from the client at any time after it has granted it the floor

(for example, to give the floor to another conference participant, or to close the conference). If this hap-

pens, the client receives an onFloorControlEnded callback. This is the client's opportunity to adjust its

internal state and its user interface to indicate that it is no longer streaming media to the conference.

Another User is Granted the Floor

When the conference server grants the floor to another user, the client receives an onFloorTaken call-

back. The client should never receive this while it has the floor, but may receive it at any time when it does

not, including after making a floor request, but before receiving the onFloorRequestAccepted callback;

it is especially likely immediately after receiving the onFloorControlEnded callback.

© 2018 CaféX | Confidential Page 45

The onFloorTaken callback may contain information about the user who has been granted the floor, in

the form of a UserInfo object containing a name and a uri. The client can update its user interface to

indicate who has the conference floor, but should not rely on this information being available, and should

check that the UserInfo parameter is not undefined.

Another User Releases the Floor

If another user releases the floor, or is removed from the floor by the conference server, the client receives

an onFloorReleased callback. This is an opportunity for the client to update its UI to indicate that the

floor is not taken by any user. If the conference server removes one participant from the floor and imme-

diately grants the floor to another participant (other than the client), then the client may receive only the

onFloorTaken callback for the new floor owner, or it may receive both onFloorReleased followed

immediately by onFloorTaken. The client should therefore not rely on receiving this callback, and should

be ready to transition directly from one participant having the floor to another participant having it,

without necessarily going through an intermediate state in which no one has the floor.

A Simple Floor Control Client Program

call.bfcp.onFloorRequestAccepted = function() {

// Update UI to show client has the floor

// Stream video-only, then

// Stop streaming video, then

call.bfcp.releaseFloor();

};

call.bfcp.onBFCPUnavailable = function() {

alert("No floor control possible");

};

call.bfcp.onNoContentStreamAvailable = function() {

alert("Tried to request floor before content ready");

};

call.bfcp.onFloorTaken = function(UserInfo user) {

if (user != undefined) {

// Display user.info and/or user.uri for user who now has the floor

}

};

call.bfcp.onFloorReleased = function() {

© 2018 CaféX | Confidential Page 46

// Remove floor information from the UI

};

call.bfcp.onFloorControlEnded = function() {

// Update UI to show client no longer has the floor

};

call.bfcp.requestFloor();

The above skeleton program releases the floor as soon as it is granted it. A real program would use the

onFloorRequestAccepted callback to start streaming content, and would call releaseFloor in

response to a user command to do so.

Floor Control and HA Cluster Failover

In the case of a multi-node cluster, when failover occurs, and control of an existing call moves from one

node in the cluster to another, floor control requests and messages may be lost; because of that, the floor

control state on the client is resynchronized with that known to the server, after a call has moved from one

node to another. When this happens, the client may receive an unexpected onFloorControlEnded or

onFloorRequestAccepted notification. Clients do not normally deal with this explicitly (their normal

processing of these messages should be enough), but developers should be aware that these messages may

be received.

Ending the Session

To end the session, the client application needs to call in to the Web Application, which can terminate the

session as described in the Ending the Session section on page 22.

Responding to Network Issues

As Fusion Client SDK is network-based, it is essential that the client application is aware of any loss of

network connection. When a network connection is lost, the server uses SIP timers to determine how long

to keep the session alive before reallocating the relevant resources. Any application you develop should

make use of the available callbacks in the Fusion Client SDK API, and any other available technologies, to

handle network failure scenarios.

© 2018 CaféX | Confidential Page 47

Reacting to Network Loss

There are two sightly different scenarios:

n FCSDK loses the network connection to the web.

First, the UC object receives a onNetworkUnavailable callback.

n If the network connection cannot be re-established within 20 seconds,

onNetworkUnavailable is followed by onConnectivityLost.

n If the connection to the network is re-established within 20 seconds, FCSDK attempts to re-

establish the connection to the Gateway.

During this process it will make fifteen attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s,

4s, 4s, 5s, 5s, 5s, 5s, 5s, 5s, 6s, 6s. A call to the onConnectionRetry(attempt,

delayUntilNextRetry) method of the UC object precedes each of these attempts.

When all reconnection attempts are exhausted, the UC object receives the

onConnectivityLost callback, and the retries stop.

If any of the reconnection attempts are successful, the UC object receives the

onConnectionReestablished callback, and retries stop.

n FCSDK loses connection to the Gateway without losing its network connection

In this case, FCSDK attempts to automatically re-establish its connection to the Gateway.

During this process it will make fifteen attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s,

5s, 5s, 5s, 5s, 5s, 5s, 6s, 6s. A call to the onConnectionRetry(attempt,

delayUntilNextRetry) method of the UC object precedes each of these attempts.

When all reconnection attempts are exhausted, the UC object receives the onConnectivityLost

callback, and the retries stop.

If any of the reconnection attempts are successful, the UC object receives the

onConnectionReestablished callback, and retries stop.

In either case, if the application receives onConnectivityLost, it means that FCSDK is unable to re-

establish a connection to the Gateway, and the application itself must take some action; at the very least it

must inform the user that they are no longer connected.

© 2018 CaféX | Confidential Page 48

Note: The retry intervals, and the number of retries attempted by the SDK, are subject to change in future

releases. Do not rely on the exact values given above.

Network Quality Callbacks

The application can implement the onCallQualityChanged callback function on theCall object to

receive callbacks on the quality of the network during a call:

call.onConnectionQualityChanged = function(connectionQuality) {

// Show indication of quality

}

The connectionQuality parameter is a number between 0 and 100, where 100 represents a perfect con-

nection. The application might choose to show a bar in the UI, the length of the bar indicating the quality

of the connection.

The SDK starts collecting metrics as soon as it receives the remote media stream. It does this every 5s, so

the first quality callback fires roughly 5s after this remote media stream callback has fired.

The callback then fires whenever a different quality value is calculated; so if the quality is perfect then

there will be an initial quality callback with a value of 100 (after 5s), and then no further callback until the

quality degrades.

© 2018 CaféX | Confidential Page 49

Creating an iOS Client Application

Fusion Client SDK enables you to develop iOS applications offering users the following methods of com-

munication:

n Voice and Video calling

n Application Event Distribution (AED).

Fusion Client SDK provides you with an iOS SDK and a network infrastructure which integrate seam-

lessly with your existing SIP infrastructure.

Developing iOS applications using Fusion Client SDK requires Xcode 4.5 or later.

Information about the minimum version of iOS supported can be found in the Release Notes.

The Fusion Client SDK for iOS is made up of the following classes:

n The top-level ACBUC class and its delegate protocol ACBUCDelegate.

n Two classes for voice and video calling:

n ACBClientPhone and its delegate protocol ACBClientPhoneDelegate.

n ACBClientCall and its delegate protocol ACBClientCallDelegate.

n Two classes for AED:

n ACBClientAED

n ACBTopic and its delegate protocol ACBTopicDelegate.

The iOS SDK reference documentation, including a full list of available methods and their associated call-

backs, is delivered in the docs.zip file. Open index.html to view the API documentation.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

To set up a project including the Fusion Client SDK, you first need to create a new project and add iOS

native frameworks to it:

© 2018 CaféX | Confidential Page 50

1. Open Xcode and choose to create a Single View Application, giving your project an appropriate name.

The following code samples use the example name iOSFusionSDKSample.

2. Click the Build Phases tab, and expand the Link Binary with Libraries section by clicking on the title.

3. Click the + button; the file explorer displays.

4. Select the following iOS native dependencies from the iOS folder:

n OpenGLES.framework

n CoreVideo.framework

n CoreMedia.framework

n QuartzCore.framework

n AudioToolbox.framework

n AVFoundation.framework

n UIKit.framework

n Foundation.framework

n CoreGraphics.framework

n CFNetwork.framework

n Security.framework

n libicucore.dylib.

n GLKit.framework

n VideoToolbox.framework

n Metal.framework

n libsqlite3.tbd (or equivalent alternative)

n libc++.tbd (or equivalent alternative)

The dependencies you selected are now displayed in the Link Binary with Libraries section.

Now, you need to add the Fusion Client SDK framework to your project.

© 2018 CaféX | Confidential Page 51

1. Select your project and click the Build Phases tab.

2. Expand the Link Binary with Libraries section by clicking on the title.

3. Click the + button. When the file explorer displays, click Add Other.

4. Navigate to the Frameworks/ACBClientSDK.framework folder, select it and click OK.

To ensure that your project compiles, you need to configure its Other Linker Flags setting:

1. Select your project and click Build Settings.

2. Enter an appropriate term in the search field to find the Other Linker Flags setting, for example

Linker. Click Search. Other Linker Flags display in the Linking section.

3. Configure Other Linker Flags with the following setting:

-ObjC -lc++

Note: Some users have found problems with build failing due to text relocation issues. To solve this,

also add the –read_only_relocs suppress flag to the above Other Linker Flags.

4. Position Independent Executables are incompatible with some codecs in the Fusion Client SDK

for iOS. In the Linking section, set Generate Position Dependent Executable to Yes.

© 2018 CaféX | Confidential Page 52

Important: When building a project created with Xcode 5, you may get linkage errors related to the Stand-

ard C++ library. This is caused by an Xcode 5 bug, which prevents it detecting the dependency the iOS SDK

has on the C++ Standard Library. To work-around this issue, add libstdc++.6.dylib to the list of

required libraries.

Note: For the best performance, we recommend that you build your application for all of the architectures

that you are targeting. Ensure that all of your target architectures are listed in Architectures and Valid

Architectures in your Xcode target build settings.

iOS 9 and Xcode 7

Existing application binaries built with earlier versions of Xcode should continue to work without modi-

fication, although you may be prompted to trust the application or developer.

New or existing projects loaded into Xcode 7 require changes before they build and run:

1. Disable the generation of bitcode

Enable Bitcode = NO.

2. Add entries to your application's plist file to disable the new iOS 9 Application Transport Security

feature - see the following for further information:

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-

Technote/

Note: The iOS sample application has been modified accordingly.

Initializing the ACBUC Object

The application accesses the API initially via a single object, ACBUC. To set up all the functionality to

which the user has access, the application needs to obtain a session ID from the Web Application (see the

Creating the Web Application section on page 14), and initialize the ACBUC object using it. Once it has

received the Session ID, the client application must call the ucWithConfiguration method on the

ACBUC:

- (void) initialize

{

NSString* sessionId = [self getSessionId];

ACBUC* uc = [ACBUC ucWithConfiguration:sessionId delegate:self];

[uc startSession];

© 2018 CaféX | Confidential Page 53

https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/
https://developer.apple.com/library/prerelease/ios/technotes/App-Transport-Security-Technote/

}

- (void) ucDidStartSession:(ACBUC *)uc

{

...

}

The delegate (in this case self) must implement the ACBUCDelegate protocol. Once the session has star-

ted, FCSDK will call the delegate method ucDidStartSession, and the application can make use of the

ACBUC object. (If the session does not start, FCSDK will call one of the delegate's error methods.)

There is an alternative version of ucWithConfiguration for use if STUN is needed, which takes as an

additional parameter, an NSArray* of STUN servers, each member an NSString in the form

stun:stun.1.google.com:19302.

NSString* sessionId = [self getSessionId];

NSArray* stunServers = [NSArray
arrayWithObject:@"stun:stun.1.google.com:19302"];

ACBUC* uc = [ACBUC ucWithConfiguration:sessionId stunServers:stunServers
delegate:self];

[uc startSession];

Note: STUN servers are not necessary if the Gateway is not behind a firewall, so that Network Address

Translation is not needed. You can provide your own STUN server instead of the public Google one above;

and you can provide more than one in the array, in which case they will be tried in sequence until FCSDK

finds a working one.

Adding Voice and Video

Once the application has initialized the ACBUC object, it can retrieve the ACBClientPhone object. It can

then use the phone object to make or receive calls, for which it returns ACBClientCall objects. Each one

of those objects has a delegate for notifications of errors and other events.

Note: As of iOS 8.2, the iOS simulator does not support video and audio input, so in order to fully test

your application with audio and video, you will have to deploy it to a real device.

Requesting Permission to use the Microphone and Camera

On iOS 7.0 and higher, your application needs to ask the end user for permission to use the microphone

and camera before they can make or receive calls. Because the microphone and camera permissions in iOS

function at an application-level and not per call, you need to consider the most appropriate time to ask the

© 2018 CaféX | Confidential Page 54

end user for their permission. iOS remembers the answer they provide until your application is uninstalled

or the permissions are reset in the iOS Settings. The end user can also change the microphone and camera

permissions for your application in iOS Settings.

The iOS SDK provides a helper method to request access to the microphone and camera:

ACBClientPhone requestMicrophoneAndCameraPermission. This method delegates to the iOS per-

mission APIs, and you should typically call it before making or receiving calls. The first time you call this

method, it displays an individual alert for each requested permission. Subsequent calls do not display an

alert unless you have reset your privacy settings in iOS Settings.

When subsequently making or receiving a call, the iOS SDK checks whether the user has given the neces-

sary permissions. For example, if you make an audio-only outgoing call, the end user only needs to have

granted permission to use the microphone; if you want to receive an incoming audio and video call, the end

user needs to have granted permission to use the microphone and camera.

If you attempt to make or answer a call with insufficient permissions, the application receives the optional

ACBClientCallDelegate didReceiveCallRecordingPermissionFailure callback method, and

the call ends.

Note: The keys NSCameraUsageDescription and NSMicrophoneUsageDescription in your app

plist file provide (part of) the text of the alert when the user is asked for permission to use the camera and

microphone. On iOS 10 and higher, these keys are mandatory, and your application will fail if you do not

provide them. See iOS SDK documentation for details.

Making a Call

In the following example, the application makes a call (using createCallToAddress on the

ACBClientPhone object) as soon as the session has started (see the Initializing the ACBUC Object sec-

tion on page 53):

- (void) ucDidStartSession:(ACBUC *)uc

{

ACBClientPhone* phone = uc.phone;

phone.delegate = aPhoneDelegate;

phone.previewView = previewView;

ACBClientCall* call = [phone createCallToAddress:calleeAddress
withAudio:ACBMediaDirectionSendAndReceive
withVideo:ACBMediaDirectionSendAndReceive delegate:aCallDelegate];

call.videoView = aVideoView;

}

© 2018 CaféX | Confidential Page 55

You can change the values of the withAudio and withVideo parameters to make an audio-only or

video-only call. Valid values are:

n ACBMediaDirectionNone

n ACBMediaDirectionSendOnly

n ACBMediaDirectionReceiveOnly

n ACBMediaDirectionSendAndReceive

Note: The older form, createCallToAddress:audio:video:delegate:, which took two boolean val-

ues, is now deprecated.

Receiving a Call

FCSDK invokes the ACBClientPhoneDelegate didReceiveCall delegate method when it receives an

incoming call. The application can answer the incoming call by calling its

answerWithAudio:andVideo: method:

- (void) phone:(ACBClientPhone*)phone didReceiveCall:(ACBClientCall*)call

{

[call setVideoView:videoView];

[call answerWithAudio:ACBMediaDirectionSendAndReceive
andVideo:ACBMediaDirectionSendAndReceive];

}

To reject the call, use [call end].

You can change the values of the parameters to answer the call as audio-only or video-only. Valid values

are:

n ACBMediaDirectionNone

n ACBMediaDirectionSendOnly

n ACBMediaDirectionReceiveOnly

n ACBMediaDirectionSendAndReceive

Note:

n The older form, answerWithAudio:video:, which took two boolean values, is now deprecated.

© 2018 CaféX | Confidential Page 56

n The audio and video options specified in the answer affect both sides of the call; that is, if the remote

party placed a video call and the local application answers as audio only, then neither party sends or

receives video.

n If your application plays its own ringing tone, please note that the iOS SDK makes calls to the

AVAudioSession sharedInstance object when establishing a call. For this reason, we recom-

mend waiting until you receive a call status of ACBClientCallStatusRinging (from

ACBClientCallDelegate didChangeStatus) before calling AVAudioSession

sharedInstance methods.

Receiving Calls when the Client is in Background or Suspended Mode

If you require the application to continue receiving calls when in background or suspended mode, you need

to add the following values to the Required background modes key in the application's plist file:

n App plays audio

n App provides Voice over IP services

Video Views and Preview Views

In order to show video during a call, the application can set the videoView on the ACBClientCall

object, and the previewView on the ACBClientPhone object. Each property is an ACBView object

(which for iOS is equivalent to a UIView).

© 2018 CaféX | Confidential Page 57

The videoView is used to render the remote party’s video stream and is mandatory for a two-way video

call. The previewView is an optional addition that renders the local party’s video stream as it is being cap-

tured; this is the same stream that the remote party receives.

Initializing the videoView and previewView is optional and can be done at any time. If there are calls in

progress when the application sets the properties, the changes take effect when the next video call is made.

When there is no video stream being sent or received, the videoView and previewView do not render

any frames; video is only displayed when streaming.

Ending a Call

If the user ends the call, the client application should call the ACBClientCall object’s end method.

To receive notification that the remote party has terminated the call, the application must monitor the state

of the call (see the Monitoring the State of a Call section on page 103) for the

ACBClientCallStatusEnded state.

Muting the Local Audio and Video Streams

During a call the application can mute or unmute the local audio and video streams. Muting the stream

stops that stream being sent to the remote party; the user still receives any stream that the remote party

sends.

To mute either stream, use one, or both, of the enableLocalAudio and enableLocalVideo methods of

the call:

- (void) muteButtonPressed:(UIButton*)button

{

[self.call enableLocalAudio:NO];

[self.call enableLocalVideo:NO];

}

Each method takes a single boolean parameter. To restore media, call enableLocalVideo or

enableLocalAudio with the parameter YES.

Holding and Resuming a Call

During a call the application can put a call on hold (for example, in order to make or receive another call).

Placing the call on hold pauses both the stream sent by the user and the stream sent by the remote party;

only the party who placed the call on hold can resume it.

© 2018 CaféX | Confidential Page 58

- (void) holdButtonPressed:(UIButton*)button

{

[call hold];

}

- (void) resumeButtonPressed:(UIButton*)button

{

[call resume];

}

DTMF Tones

Once a call is established, an application can send DTMF tones on that call by calling the playDTMFCode

method of the ACBClientCall object:

[call playDTMFCode:@"#123*" localPlayback:YES];

n The first parameter can either be a single tone, (for example, 6), or a sequence of tones (for example,

#123,*456). Valid values for the tones are those characters conventionally used to represent the

standard DTMF tones: 0123456789ABCD#*.

Note: The comma indicates that there should be a two second pause between the 3 and the * tone.

n The second parameter is a boolean which indicates whether the application should play the tone

back locally so that the user can hear it.

Handling Multiple Calls

Applications developed with Fusion Client SDK for iOS do not support multiple simultaneous calls.

Setting Video Resolution

The Fusion Client SDK supports configuring the captured, and therefore sent, video resolution for video

calls. The application can select one of a set of video resolutions, and apply it to the capture device. It can

also configure the frame rate for capture. When it specifies a resolution and frame rate, FCSDK makes

every effort to match those values where hardware allows.

Enumerating the Possible Resolutions

The application can get a list of possible resolutions from the ACBClientPhone object using the

recommendedCaptureSettings method:

NSArray* recommendedSettings = [uc.phone recommendedCaptureSettings];

© 2018 CaféX | Confidential Page 59

The array returned by this method contains an ACBVideoCaptureSetting object for each recommended

setting. Each ACBVideoCaptureSetting specifies a resolution and a recommended frame rate for that

resolution.

The supported resolutions are:

Enumeration Value Width Height Frame Rate

ACBVideoCaptureResolution352x288 352 288 20 or 30 depending on device - see

table below.

ACBVideoCaptureResolution640x480 640 480 30

ACBVideoCaptureResolution1280x720 1280 720 30

The maximum resolution and frame rate available on each iOS device are as shown in the table below.

Device Type Maximum Resolution Maximum Frame Rate

iPhone 4 and below

iPad 1

No video support

iPhone 4s

iPad 2

iPad 3

iPad mini

352x288 20

iPhone 5

iPhone 5c

iPhone 5s

iPad 4

iPad mini retina

640x480 30

iPad Air 1280x720 30

If you set the resolution of frame rate to values higher than these, then the provided resolution or frame

rate is the minimum of the requested value and the maximum value for the particular device.

Important: The table above is valid for the release 2.15 but may change in a future release.

© 2018 CaféX | Confidential Page 60

Setting the Resolution

The application can set the captured video resolution using the preferredCaptureResolution prop-

erty of the ACBClientPhoneobject. The value supplied must be one of the resolutions presented in

recommendedCaptureSettings, as described the Enumerating the Possible Resolutions section on

page 59

ACBVideoCaptureSetting chosenSetting = [recommendedSettings
objectAtIndex:0];

uc.phone.preferredCaptureResolution = chosenSetting.resolution;

Alternatively, one of the values from the enumeration:

uc.phone.preferredCaptureResolution = ACBVideoCaptureResolution352x288;

Note: The video capture resolution only applies for the next call made with the phone object, and it does

not affect calls currently in progress.

Setting the Frame Rate

The application can set the captured video frame rate using the preferredCaptureFrameRate property

of the ACBClientPhoneobject:

ACBVideoCaptureSetting chosenSetting = [recommendedSettings
objectAtIndex:0];

uc.phone.preferredCaptureFrameRate = chosenSetting.frameRate;

Alternatively, it can try to set a custom frame rate:

uc.phone.preferredCaptureFrameRate = 20;

Note: The video capture frame rate only applies for the next call made with the phone object, and it does

not affect calls currently in progress.

Dial Failures

FCSDK does not call the ACBClientCallDelegate failure methods (didReceiveDialFailure and so

on) for failures caused by a timeout. This results in the client seeing the Trying to call… dialog, despite

the call being inactive. To avoid this, handle these timeout errors using the status delegate methods;

examples can be found in the Monitoring the State of a Call section on page 103 and in particular to

the callback:

(void) call:(ACBClientCall*)call didChangeStatus:
(ACBClientCallStatus)status;

© 2018 CaféX | Confidential Page 61

Handling Device Rotation

The SDK automatically handles control of the video orientation.

Note: The setVideoOrientation method of ACBClientPhone is now deprecated.

Switching between the Front and Back cameras

By default, during video calls, FCSDK uses the front camera. The application can change this by calling the

setCamera method of ACBClientPhone.

- (void) switchToBackCamera

{

[self.phone setCamera:AVCaptureDevicePositionBack];

}

Two parameters can be passed to this method:

n AVCaptureDevicePositionBack

n AVCaptureDevicePositionFront.

These enumeration values are in <AVFoundation/AVCaptureDevice.h>.

The camera setting persists between calls; if the back camera is enabled during a video call, the next video

call will also use that camera.

The method can be called at any time; if there are no active video calls, the value takes effect when a video

call is next in progress.

Application Background Mode

When the user presses the Home button, presses the Sleep/Wake button, or the system launches another

application, the foreground application transitions to the inactive state and then to the background state. If

you are currently streaming video from your application, this is suspended when the application goes into

background mode, and automatically resumes when the application returns to the foreground. Audio con-

tinues to be streamed when an application goes into background mode.

It is an application developer's responsibility to consider both functional and privacy implications, and

decide whether their application should mute audio and video when transitioning to background mode (see

the Muting the Local Audio and Video Streams section on page 58).

© 2018 CaféX | Confidential Page 62

If you mute the video when in background mode, you must unmute in order to resume capture and stream-

ing.

Note: The behavior of iOS is different to Android.

Monitoring the State of a Call

A call transitions through several states, and the application can monitor these by assigning a delegate to

the call:

- (void) phone:(ACBClientPhone*)phone didReceiveCall:(ACBClientCall*)call

{

call.delegate = self;

...

}

Each state change fires the call:didChangeStatus: delegate method. As the outgoing call progresses

toward being fully established, the application receives a number of calls to didChangeStatus, con-

taining one of the ACBClientCallStatus enumeration values each time.

The application can adjust the UI by switching on the value of the status parameter, to give the user suit-

able feedback, for example by playing a local audio file for ringing or alerting:

- (void) call: (ACBClientCall*)call didChangeStatus:(ACBClientCallStatus)
status

{

switch (status)

{

case ACBClientCallStatusRinging:

[self playRingtone];

break;

case ACBClientCallStatusInCall:

[self stopRinging];

break;

case ACBClientCallStatusEnded:

case ACBClientCallStatusBusy:

case ACBClientCallStatusError:

case ACBClientCallStatusNotFound:

case ACBClientCallStatusTimedOut:

[self updateUIForEndedCall];

break;

default:

break;

}

© 2018 CaféX | Confidential Page 63

}

The following table gives the possible status codes:

Status code Meaning

ACBCallStatusSetup Call is in process of being set up

ACBCallStatusAlerting The call is an incoming one which is alerting (ringing)

ACBCallStatusRinging An outgoing call is ringing at the remote end

ACBCallStatusMediaPending The call is connected, and waiting for media

ACBCallStatusInCall The call is fully set up, including media

ACBCallStatusBusy Dialed number is busy

ACBCallStatusNotFound Dialed number is unreachable or does not exist

ACBCallStatusTimedOut Dialing operation timed out without a response from the dialed num-

ber

ACBCallStatusError An error has occurred on the call. such the media broker reaching its

full capacity, the network terminating the request, or there being no

media.

ACBCallStatusEnded The call has ended

Adding Application Event Distribution

The application initially accesses the API via a single object, ACBUC, from which other objects can be

retrieved. ACBUC has an attribute named aed, which is the starting point for all Application Event

Distribution operations.

To create an AED application, you need to:

1. Create an instance of ACBTopicDelegate and implement the callback methods.

2. Access the aed attribute to create or connect to an ACBTopic, supplying the delegate from the pre-

vious step.

3. Call methods on the topic object to change data on the topic.

4. Disconnect from the topic when you no longer want to receive AED notifications.

© 2018 CaféX | Confidential Page 64

Creating and Connecting to a Topic

The application can create a topic using the createTopicWithName:delegate: method on the AED

object:

ACBTopic* topic = [uc.aed createTopicWithName:@"name"
delegate:topicDelegate];

or the createTopicWithName:expiryTime:delegate: method:

ACBTopic* topic = [uc.aed createTopicWithName:@"name" expiryTime:5
delegate:topicDelegate];

The name of the topic is an NSString, and the expiryTime parameter is a time in minutes. A topic cre-

ated with an expiry time will be automatically removed from the server after the topic has been inactive for

that time. When created without an expiry time, the topic exists indefinitely, and the application must

delete it explicitly (see the Disconnecting from a Topic section on the next page). The delegate is an

object conforming to the ACBTopicDelegate protocol.

Important: Either of these creates a client-side representation of a topic and automatically connects to it. If

the topic already exists on the server, it connects to that topic; if the topic does not already exist, it creates

it.

didConnectWithData

After connecting to the topic, the delegate will receive a didConnectWithData callback. (In the case of

failure, it will receive a didNotConnectWithMessage callback with a message parameter (an

NSString).) The didConnectWithData callback has a single data parameter containing all the data

currently associated with the topic.

The data parameter is an NSDictionary which contains a value with the key data, which is an

NSArray of NSDictionary objects, each of which contains a single data item with members called key

and value. The application can iterate through the data items to display them to the newly connected

user:

- (void)topic:(ACBTopic*)topic didConnectWithData:(NSDictionary*)data

{

//topic data is an array containing all our key/value pairs

NSArray *topicData = [data objectForKey:@"data"];

if([topicData count] > 0)

{

//we can show our users the data in the topic as follows

for(int i = 0; i < [topicData count] ; i++)

© 2018 CaféX | Confidential Page 65

{

NSString* keyField = [[topicData objectAtIndex:i]
valueForKey:@"key"];

NSString* valueField = [[topicData objectAtIndex:i]
valueForKey:@"value"];

// Display key and value

}

}

}

Disconnecting from a Topic

You can either disconnect from the topic without destroying it:

[topic disconnectWithDeleteFlag:FALSE];

or delete the topic from the server, which will also disconnect any other subscribers:

[topic disconnectWithDeleteFlag:TRUE];

When you delete the topic by calling disconnectWithDeleteFlag:TRUE, you will receive a

didDeleteWithMessage callback, followed by a topicDidDelete callback.

topicDidDelete

All clients connected to the topic receive a topicDidDelete callback when the topic is deleted from the

server, either as a result of any client deleting it, or as a result of the topic expiring on the server (see the

Creating and Connecting to a Topic section on the previous page for details of topic expiry). Once a

topic has been deleted, the client should not call any of that topic's methods (which will fail in any case),

and should consider itself unsubscribed from that topic. If a topic with the same name is subsequently cre-

ated, it is a new topic, and the client will not be automatically subscribed to it.

Publishing Data to a Topic

Once the application has connected to a topic, it can publish data on it. Data consists of name-value pairs:

[topic submitDataWithKey @"key_one" value:@"value"];

Having submitted the data, the delegate receives either a didSubmitWithKey or (in the case of failure) a

didNotSubmitWithKey callback. Both callbacks contain the key and value which were submitted (suc-

cessfully or unsuccessfully). The didNotSubmitWithKey callback also contains a message parameter

giving more details of the failure The didSubmitWithKey callback also contains a version parameter;

this is an incrementing value which enables the application to check if the data it has just sent is the latest

on the server.

© 2018 CaféX | Confidential Page 66

In the case of a successful submission, the delegate also receives a didUpdateWithKey callback.

didUpdateWithKey

A client receives a didUpdateWithKey callback when any client connected to the topic makes a change

to a data item on that topic. The callback contains the key, value, and version parameters detailed pre-

viously (value contains the new value), and an additional deleted parameter, which will be TRUE if the

data item has been deleted from the server (see the Deleting Data from a Topic section below).

Deleting Data from a Topic

The client can delete the data item from the topic by calling:

[topic deleteDataWithKey:@"key_one"];

The delegate receives either a didDeleteDataSuccessfullyWithKey callback (containing the key and

version) or a didNotDeleteDataWithKey callback (containing a message indicating the cause of fail-

ure).

All clients subscribed to the topic will also receive a didUpdateWithKey callback, with the deleted para-

meter set to TRUE.

Sending a Message to a Topic

A client application can send a message to a topic and have that message sent to all current subscribers:

[topic sendAedMessage:@"message to send"];

If it is successful, the delegate receives a didSendMessageSuccessfullyWithMessage callback fol-

lowed by a didReceiveMessage callback, both containing the message in the message parameter; if it is

not successful, the delegate receives a didNotSendMessage callback, containing an originalMessage

and a message parameter.

didReceiveMessage

The delegate will receive a didReceiveMessage callback whenever any connected client (including itself)

sends a message to the topic. The only parameter is the message parameter (containing the text of the

sent message).

© 2018 CaféX | Confidential Page 67

Threading

The application must make all method invocations on the SDK, even to access read-only properties, from

the same thread. This can be any thread, and not necessarily the main thread of the application. Internally,

the SDK may use other threads to increase responsiveness, but any delegate callbacks will occur on the

same thread that is used to initialize the SDK.

Self-Signed Certificates

If you are connecting to a server that uses a self-signed certificate, you need to add that certificate, and the

associated CA root certificate, to the keychain on your client.

You can obtain the server certificate and CA root certificate through the FAS Administration screens. The

FAS Administration Guide explains how to view and export certificates. You need to extract the HTTPS

Identity Certificate (server certificate) and the Trust Certificate (CA root certificate) that has signed your

server certificate.

Once you have exported and downloaded the two certificates, you need to copy them to your client. Please

follow the user documentation for your device to install the certificates.

You should then view the installed server certificate through the appropriate tool (iOS Settings->General-

>Profiles or OSX Keychain) and confirm that the server certificate is trusted. If it is, then your application

should connect to the server.

Alternatively, you can use the acceptAnyCertificate method of the ACBUC object before calling

startSession, although this should only be used during development:

ACBUC* uc = [ACBUC ucWithConfiguraton:sessionId stunServers:stunServers
delegate:self];

[uc acceptAnyCertificate:TRUE];

[uc startSession];

Note: Since iOS 9, you also need to add a setting to your application's plist file to allow connection to a

server using self-signed certificates. Set Allow Arbitrary Loads under App Transport Security Settings

to YES.

Testing IPv6

Apple require that apps submitted to the Apple store support IPv6-only networks, and you should test this

during development; see:

© 2018 CaféX | Confidential Page 68

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/N

etworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparin

gfortheIPv6Transition.html

Neither Media Broker nor FAS support IPv6 directly; however, you can configure Media Broker to give an

IPv6 public address to the client, and then you can access both FAS and Media Broker through a NAT64

router. Apple laptops support providing a NAT64 Wi-Fi hotspot, as long as you are able to connect to your

network through another interface such as an Ethernet cable - for details on enabling this, see the Test for

IPv6 DNS64/NAT64 Compatibility Regularly section in the above link.

To configure Media Broker to give IPv6 addresses to the client, edit the Media Broker’s settings:

1. In the configuration console, expand WebRTC Client settings.

2. For each of the current public addresses click add, then enter an IPv6 equivalent in the public

address.

If using an Apple laptop hotspot, then the IPv6 address equivalent starts with

64::ff9b::

and is followed by the hexadecimal version of the IPv4 address. For example c0a8:131d is the equi-

valent of 192.168.19.29

3. Duplicate the three other fields from the IPv4 port and address.

Note: Apple sometimes require testing an app in full during submission, in which case a public NAT64 is

required - contact support for details on how to implement this.

© 2018 CaféX | Confidential Page 69

https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html
https://developer.apple.com/library/ios/documentation/NetworkingInternetWeb/Conceptual/NetworkingOverview/UnderstandingandPreparingfortheIPv6Transition/UnderstandingandPreparingfortheIPv6Transition.html

Bluetooth Support

The user can set the active audio device (speaker and microphone) for an iOS device, and FCSDK calls will

use this setting by default. However, this behavior may not be appropriate while an FCSDK application is

running; and in particular, the default behavior does not allow the call to switch to an alternative device if

the active device fails (a particular problem with Bluetooth devices). The application can override the

default behavior using the ACBAudioDeviceManager class; a single instance of this class is available on

the ACBClientPhone object which controls the call. While this is in use, the application can:

n Define which audio output on the phone should handle the audio

n Define a default audio output on the phone, which will handle the audio if the preferred device is inter-

rupted.

n Get a list of available audio outputs on the phone

n Determine which of the phone's audio outputs currently handles the audio

Note: This class has been added specifically to support the use of Bluetooth headsets, and we expect this

to be its main use; accordingly, the examples assume that this is how it is being used. However, an applic-

ation could also use this class to manage the audio output to the speakerphone, the internal speaker, and

an external headphone set, and to explicitly exclude the use of Bluetooth headsets with the calls made by

the application.

Starting and Stopping ACBAudioDeviceManager

In order to use the methods on the ACBAudioDeviceManager, the application must first call the start

method of the instance in the ACBClientPhone which is handling the call:

[uc.phone.audioDeviceManager start];

An appropriate place to do this is during initialization of the object which is to control the call.

After the ACBAudioDeviceManager starts, the application can call its methods to set the audio devices

which the phone should use for calls made or received by the application. Calls which are not handled by

the FCSDK application will be unaffected, and will use the phone's default behavior.

In order to return to the iOS device's default behavior without ending the call, the application can call

stop:

[uc.phone.audioDeviceManager stop];

© 2018 CaféX | Confidential Page 70

Note: While the audio device manager is active the application must not call the setCategory method of

the call's AVAudioSession object. Doing so can cause unexpected behavior.

Setting the Preferred Device

The application can set the preferred device for the call:

[uc.phone.audioDeviceManager setAudioDevice:
(ACBAudioDevice*) ACBAudioDeviceBluetooth];

The argument to the method must be one of the members of the ACBAudioDevice enumeration:

n ACBAudioDeviceSpeakerphone

Audio goes to the loudspeaker in the phone, and is audible to others in the vicinity. Audio input is

from the phone's internal microphone.

n ACBAudioDeviceWiredHeadset

Audio goes to a device attached to the jack in the phone. If this device has a microphone, that is used

for audio input.

n ACBAudioEarpiece

Audio goes to the internal speaker, and is received from the internal microphone. The user will have

to hold the phone to their ear during the call.

n ACBAudioDeviceBluetooth

Audio is sent to and received from a paired Bluetooth device.

n ACBAudioDeviceNone

The application has no preference, and accepts the default behavior of the iOS device.

If the preferred device is available when the application calls setAudioDevice, the call starts using that

device; otherwise, there is no immediate change, but if it later becomes available (the Bluetooth device is

switched on or is otherwise recognized), then the audio switches to this device.

Setting the Default Device

The application can set a fallback device in case the preferred device is unavailable:

[uc.phone.audioDeviceManager setDefaultDevice:
(ACBAudioDevice*) ACBAudioDeviceEarpiece];

© 2018 CaféX | Confidential Page 71

The argument is one of the values from the ACBAudioDevice enumeration (see the Setting the Pre-

ferred Device section on the previous page).

Setting the default device establishes a fallback option in case the preferred device is temporarily unavail-

able. A common use would be:

[uc.phone.audioDeviceManager setAudioDevice:
(ACBAudioDevice*) ACBAudioDeviceBluetooth];

[uc.phone.audioDeviceManager setDefaultDevice:
(ACBAudioDevice*) ACBAudioDeviceEarpiece];

which would establish the Bluetooth headset as the preferred device, with the normal phone internal

speaker and microphone as a fallback. With these settings in operation:

1. The call starts, but no Bluetooth headset is available. The call is sent to the internal speaker and micro-

phone.

2. The Bluetooth headset is switched on. The phone switches the audio to the headset, and the user can

put the phone down and continue the call.

3. The headset fails (perhaps the battery becomes too low). The application switches the call back to the

internal speaker and microphone.

4. The user switches on another (fully powered) Bluetooth headset and pairs it with the phone. The audio

switches to the new headset and the call continues on that device.

If the default device is also unavailable, the audio will be sent to whatever has been set as the active device

on the phone (that is, it will fallback to the iOS default behavior).

Listing Available Devices

The application can get a list of available audio devices by calling the audioDevices method:

NSMutableArray* devices = [uc.phone.audioDeviceManager audioDevices];

The resulting array contains members of the ACBAudioDevice enumeration, taken from the available

inputs known to the AVAudioSession.

It can also find which device is currently set as the preferred audio device:

ACBAudioDevice* device = [uc.phone.audioDeviceManager selectedAudioDevice];

This will work whether the preferred device has been set explicitly (using setAudioDevice) or not.

© 2018 CaféX | Confidential Page 72

Responding to Network Issues

As the iOS SDK is network-based, it is essential that the client application is aware of any loss of con-

nection. Fusion Client SDK does not dictate how you implement network monitoring; however, the

sample application uses the SystemConfiguration framework.

Depending on the nature of the issues with the network, the client application should react differently.

Reacting to Network Loss

In the event of network connection problems, the SDK automatically tries to re-establish the connection. It

will make seven attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s. A call to the

willRetryConnectionNumber:in:] on the ACBUCDelegate precedes each of these attempts. The call-

back supplies the attempt number (as an NSUInteger) and the delay before the next attempt (as an

NSTimeInterval) in its two parameters.

When all reconnection attempts are exhausted, the ACBUCDelegate receives the

ucDidLoseConnection callback, and the retries stop. At this point the client application should assume

that the session is invalid. The client application should then log out of the server and reconnect via the

web app to get a new session, as described in the Creating the Session section on page 15.

If any of the reconnection attempts are successful, the ACBUCDelegate receives the

ucDidReestablishConnection callback.

Note that both the willRetryConnectionNumber and ucDidReestablishConnection are optional,

so the application may choose to not implement them. The connection retries are attempted regardless.

Note: The retry intervals, and the number of retries attempted by the SDK are subject to change in future

releases. Do not rely on the exact values given above.

Reacting to Network Changes

If the issues with the network are caused by a temporary loss of connectivity (for example, when moving

between two Wi-Fi networks, or from a Wi-Fi network to a cellular data connection), the client application

should not log out from the session and log back in (as described in the Reacting to Network Loss sec-

tion on page 105), as all session state will be lost.

© 2018 CaféX | Confidential Page 73

To avoid this, the client application should register with iOS to receive notification of changes in network

reachability. When iOS notifies the client application that the network has changed, the application should

pass these details to the ACBUC instance.

When the client application starts, it should check for network reachability. When the network is reach-

able, the application calls ACBUC setNetworkReachable:YES; until this call is made, the application

does not attempt to create a session.

If the network reachability drops after a session has been established, the client application needs to call

ACBUC setNetworkReachable:NO.

If the network reachability changes from a cellular data connection to a Wi-Fi network, or vice versa, the

client application should call ACBUC setNetworkReachable:NO followed by ACBUC

setNetworkReachable:YES to disconnect from the first network and re-register on the second.

Network Quality Callbacks

The application can implement the didReportInboundQualityChange callback on the

ACBClientCallDelegate object to receive callbacks on the quality of the network during a call:

- (void) call:(ACBClientCall*)call didReportInboundQualityChange:
(NSUInteger)inboundQuality

{

// Show indication of quality

}

The inboundQuality parameter is a number between 0 and 100, where 100 indicates perfect quality.

The application might choose to show a bar in the UI, the length of the bar indicating the quality of the con-

nection.

The SDK starts collecting metrics as soon as it receives the remote media stream. It does this every 5s, so

the first quality callback fires roughly 5s after this remote media stream callback has fired.

The callback then fires whenever a different quality value is calculated; so if the quality is perfect then

there will be an initial quality callback with a value of 100 (after 5s), and then no further callback until the

quality degrades.

© 2018 CaféX | Confidential Page 74

Creating an Android Client Application

Fusion Client SDK enables you to develop Android applications offering users the following methods of

communication:

n Voice and Video calling

n Application Event Distribution (AED).

Fusion Client SDK provides you with an Android SDK and a network infrastructure which integrate seam-

lessly with your existing SIP infrastructure.

To develop Android applications using Fusion Client SDK, your system will need to conform to the sys-

tem requirements listed at http://developer.android.com/sdk/index.html.

Information about the minimum supported version of Android can be found in the Release Notes.

The Android API reference documentation, including a full list of available methods and their associated

callbacks, is delivered in the docs directory. Open index.html to view the API documentation.

Note: The structure of an Android application revolves around different Activity objects, and the

sample code included with the FCSDK Android SDK shows a typical structure. In the sample code, there is

a LoginActivity, which gets the session token from the server (see the Creating the Session section

on page 15); a Main Activity, which creates the UC object and connects to the session (see the Creating

the UC Object section on the next page); and an InCallActivity, which makes and receives calls,

and works with those calls while they are in progress. AED operations (see the Adding Application Event

Distribution section on page 86) are centralized in the AEDFragment and AEDTopicManager classes.

We recommend that Android applications which make use of the FCSDK should separate their operations

similarly; however, for simplicity this separation is not shown in the code snippets in the following section

- see the sample code.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

© 2018 CaféX | Confidential Page 75

http://developer.android.com/sdk/index.html

1. Create an Android Application project using either Android Studio or the Eclipse Android Developer

Tools (ADT) plugin.

2. Add fusionclient-android-sdk.jar to your project. This is found in the sample application’s libs

directory.

Note: Only fusionclient-android-sdk.jar displays in the project; however it contains the fol-

lowing dependency jars and libraries:

n libacbjnglpeerconnection.jar

n org.apache.http.legacy.jar

3. Add the following to your libs folder:

n android-support-v4.jar

n libacbjnglpeerconnection_so.so

The android-support-v4.jar is required if you want to write applications that use newer Android

features but also support older devices which do not support those features by default.

4. In order to allow your project to access the required features on Android devices, include the fol-

lowing permissions in your AndroidManifest.xml file:

n android.permission.INTERNET

n android.permission.RECORD_AUDIO

n android.permission.CAMERA

n android.permission.MODIFY_AUDIO_SETTINGS

Creating the UC Object

To set up all the functionality which the user has access to, the client application must obtain a session ID

from the Web Application (see the Creating the Web Application section on page 14), and create a UC

object using it. You create a UC object from a single object, UCFactory:

String sessionToken = getSessionToken();

UC uc = UCFactory.createUc(context, sessionToken, listener);

uc.setNetworkReachable(true);

uc.startSession();

© 2018 CaféX | Confidential Page 76

In addition to the session token, createUc takes an android.content.Context object, and an object

which implements the UCListener interface. When the session starts, the listener receives an

onSessionStarted callback.

Note: If the application saves the session token in the instance state as soon as it receives it from the Web

Application, it can create or re-create the UC object as necessary in the onCreate method of the main

Activity, even if the application has been put into the background before creating the UC object.

There is an alternative version of createUc, which takes a list of STUN servers in addition:

String sessionToken = getSessionToken();

List<String> stunServers = new List<String>();

stunServers.append("stun:stun.1.google.com:19302");

UC uc = UCFactory.createUc(context, sessionToken, stunServers, listener);

uc.setNetworkReachable(true);

uc.startSession();

Note: STUN servers are not necessary if the Gateway is not behind a firewall, so that Network Address

Translation is not needed. You can provide your own STUN server instead of the public Google one above.

You can provide more than one in the array, in which case FCSDK tries them in sequence until it finds a

working one.

Adding Voice and Video

Once the application has created the UC object, it can use it to obtain an instance of the Phone and AED

objects.

The application uses the Phone object to make or receive calls, represented by Call objects. Objects in the

API implement the listener pattern which enables an application to be informed of the outcome of oper-

ations and other events.

The application can use the AED object to create AED Topics (see the Adding Application Event Dis-

tribution section on page 86).

Making a Call

After the session starts (see the Creating the UC Object section on the previous page), the application

can make a call using the createCall method of the Phone object:

Call call;

public void onSessionStarted()

© 2018 CaféX | Confidential Page 77

{

Phone phone = uc.getPhone();

phone.addListener(this);

call = phone.createCall(callee, audio, video, listener);

}

The callee parameter is a String containing the address to make the call to.

You can use the values of the audio and video parameters to make an audio-only or video-only call.

Valid values are members of the MediaDirection enumeration:

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

The listener parameter is an object implementing the CallListener interface, which receives noti-

fications of events of interest on the call (such as when it is completely set up).

(The above code makes a call as soon as the session has started. More typically, the application starts a

new Activity to gather the callee's number in response to the session starting, and another new

Activity to make the call, once the callee's number is known. See the sample code included in the

Android SDK for a more realistic architecture.)

Note: The older form in which audio and video were boolean parameters is now deprecated.

Receiving a Call

FCSDK invokes the PhoneListener onIncomingCall method when it receives an incoming call,

passing a Call object as a parameter. The application can answer the incoming call by calling its answer

method:

public void onIncomingCall(Call call)

{

call.addListener(this);

call.answer(audio, video);

}

public void onStatusChanged(Call call, CallStatus status)

{

switch (status)

{

© 2018 CaféX | Confidential Page 78

...

case IN_CALL:

// Adjust UI

...

break;

...

}

}

You can use the values of the audio and video parameters to answer the call as audio-only or video-

only. Valid values are members of the MediaDirection enumeration:

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

The audio and video options specified in the answer will affect both sides of the call; that is, if the remote

party placed a video call and the local application answers as video only, then neither party will send or

receive audio. Adding a CallListener before answering the call allows the application to receive a noti-

fication when the call is completely set up, so that it can render video and audio streams.

Note: The older form in which audio and video were boolean parameters is now deprecated.

To reject the call, call the Call object's end method.

Video Views and Preview Views

In order to show video during a call, the application calls setVideoView on the Call object and

setPreviewView on the Phone object. Both methods take a single VideoSurface parameter.

The application creates a VideoSurface using the createVideoSurface method of the Phone object,

passing in the android.content.Context, the required dimensions (an android.graphics.Point

object), and an object implementing VideoSurfaceListener. Initializing the VideoSurface is optional

and can be done at any time, but typically the application would create video surfaces for the preview view

and remote video view as soon as the Phone object is available, and then set them using the Phone object

or a Call object:

void onCreate(Bundle savedInstanceState)

{

© 2018 CaféX | Confidential Page 79

// Restore information from instance state

...

videoSurface = phone.createVideoSurface(this, videoSize, listener);

previewSurface = phone.createVideoSurface(this, previewSize, listener);

phone.setPreviewView(previewSurface);

// Set up UI, cameras, etc.

...

}

void onStatusChanged(Call call, CallStatus status)

{

switch (status)

{

...

case IN_CALL:

// Show video

call.setVideoView(videoSurface);

...

break;

...

}

}

The video view renders the remote party's video stream and is mandatory for a two-way video call. The pre-

view view renders the local party's video stream as it is being captured; this is the same stream that the

remote party will receive.

If there are calls in progress when these properties are set, the changes will take effect immediately and

endure for future calls. If there are no active video calls, the change will take effect when a video call is

next in progress.

When there is no video stream being sent or received, the video view and preview view render a full frame

of green. Video appears only when there is video being streamed.

The application can set the camera to use as the local video source on the Phone object. See the Switch-

ing between the Front and Back Cameras section on page 84.

Ending a Call

If the user ends the call, the client application should call the Call object’s end method.

© 2018 CaféX | Confidential Page 80

To detect that the remote party has ended the call, the client application must implement the

CallListener interface in order to receive onStatusChanged notifications (see the Monitoring the

State of a Call section on page 84).

Note: CallListener.onRemoteMediaStream will also be called at the end of a call (with argument

null), as well as at the beginning of the call.

Muting the Local Audio and Video Streams

During a call, the application can mute and unmute the local audio and video streams separately. Muting

the stream stops that stream being sent to the remote party. The remote party's stream continues to play

locally, however.

To mute either stream, use the enableLocalAudio and enableLocalVideo methods of the Phone

object.

void onMuteButtonPressed()

{

phone.enableLocalAudio(false);

phone.enableLocalVideo(false);

}

To restore media, call the same method with the parameter set to true.

Note: This will affect all calls and persists to subsequent calls. When a call starts, the streams will be

muted as per the current Phone setting.

Muting or unmuting a video stream in an audio-only call has no effect.

Holding and Resuming a Call

The application can put a call on hold (for example, in order to make or receive another call). Placing the

call on hold pauses the stream sent by the user and the stream sent by the remote party; only the party

who placed the call on hold can resume it.

void holdButtonPressed()

{

call.hold();

}

void resumeButtonPressed()

{

call.resume()

}

© 2018 CaféX | Confidential Page 81

Sending DTMF Tones

An application can send DTMF tones on the call by calling the playDTMFCode method on the Call object.

The first parameter to this call is a String, which can be either a single tone, (for example, 6), or a

sequence of tones (for example, #123*456). Valid values for the tones are those characters conventionally

used to represent the standard DTMF tones: 0123456789ABCD#*. A comma character inserts a two-

second pause into a sequence of tones.

The second parameter should be true if you want the tones to be played back locally, so that the user of

the application can hear them.

Handling Multiple Calls

Applications developed with Fusion Client SDK for Android do not support multiple simultaneous calls:

Setting Video Resolution

The Fusion Client SDK Android SDK supports configuring the captured, and therefore sent, video res-

olution for video calls. The application can select one of a set of video resolutions, and apply it to the cap-

ture device. It can also configure the frame rate for capture. When it specifies a resolution and frame rate,

FCSDK makes every effort to match those values where hardware allows.

Enumerating the Possible Resolutions

The application can get a list of possible resolutions from the Phone object via the

getRecommendedCaptureSettings() method:

List<PhoneVideoCaptureSetting> recommendedSettings =
phone.getRecommendedCaptureSettings();

The List returned by this method contains a PhoneVideoCaptureSetting object for each recom-

mended setting. Each PhoneVideoCaptureSetting provides a resolution (from its getResolution

method) and a recommended frame rate (from its getFramerate method) for that resolution.

The supported resolutions are:

Enumeration Value Width Height

RESOLUTION_176x144 176 144

RESOLUTION_352x288 352 288

© 2018 CaféX | Confidential Page 82

Enumeration Value Width Height

RESOLUTION_640x480 640 480

RESOLUTION_960x720 960 720

RESOLUTION_1280x720 1280 720

Note: The behavior on Android is different from iOS. On iOS, the SDK will not allow you to set the res-

olution to one that is not supported by the device. Due to the vast number of Android devices, we cannot

know what devices can support a given resolution, and so the Android SDK allows the application to

choose any supported resolution; there is, however, no guarantee that the phone will honor it.

Setting the Resolution

The application can set the captured video resolution using the setPreferredCaptureResolution

method of the Phone object. The single parameter is one of the PhoneVideoCaptureResolution enu-

meration:

phone.setPreferredCaptureResolution(PhoneVideoCaptureResolution.RESOLUTION_
640x480);

Alternatively, you can get it from a PhoneVideoCaptureSetting value (see the Enumerating the Poss-

ible Resolutions section on the previous page):

PhoneVideoCaptureSetting setting = phone.getRecommendedCaptureSettings().get
(0);

phone.setPreferredCaptureResolution(setting.getResolution());

Note: The video capture resolution will only apply to the next call made with the Phone object; it does not

affect calls currently in progress.

Setting the Frame Rate

The application can set the captured video frame rate using the setPreferredCaptureFrameRate

method of the Phone object. It takes a single integer parameter:

phone.setPreferredCaptureFrameRate(20);

Note: The video capture frame rate only applies to the next call made with the Phone object; it does not

affect calls currently in progress.

Handling Device Rotation

The SDK automatically handles control of the video orientation.

© 2018 CaféX | Confidential Page 83

Note: The setVideoOrientation method of the Phone object is now deprecated.

Switching between the Front and Back Cameras

By default, when making video calls, FCSDK uses the front-facing camera. The application can change this

by calling the setCamera method on the Phone object, and passing the camera Id you wish to use; see the

Android API Guide at

http://developer.android.com/reference/android/hardware/Camera.html#open(int) for selecting

the camera Id to use.

The camera setting persists between calls; that is, if you enable the rear-facing camera during a video call,

the next video call will also use that camera.

The method can be called at any time; if there are no active video calls, the value will take effect when a

video call is next in progress.

The FCSDK android sample app checks to see how many cameras there are on the device. If there is only 1

camera, it uses it, whether it is front-facing or back-facing. If there is more than 1 camera, it uses the first

front-facing camera it can find. If there is more than 1 camera on the device, the sample app adds a

Camera Selection menu to the Options Menu to allow the user to select between the front-facing and

back-facing camera.

Application Background Mode

When the user presses the Home button, presses the power button, or the system launches another applic-

ation, the foreground application transitions to the inactive state and then to the background state. If you

are currently streaming video from your application, this continues when the application goes into back-

ground mode.

It is an application developer's responsibility to consider both functional and privacy implications, and

decide whether their application should mute audio and video when transitioning to background mode.

Note: The behavior of Android is different to that of iOS.

Monitoring the State of a Call

During call setup, the call transitions through several states, from the initial setup to being connected with

media available (or failure). You can monitor these states by setting the CallListener and implementing

© 2018 CaféX | Confidential Page 84

http://developer.android.com/reference/android/hardware/Camera.html#open(int)

the onStatusChanged method.

The application can adjust its UI by switching on the value of the CallStatus enumeration, to give the

user suitable feedback; for example by playing a local audio file for ringing or alerting:

public void onStatusChanged(Call call, CallStatus status)

{

switch (status)

{

case RINGING:

playRingtone();

break;

case IN_CALL:

stopRinging();

break;

case ENDED:

case BUSY:

case ERROR:

case NOT_FOUND:

case TIMED_OUT:

updateUIForEndedCall();

break;

default:

break;

}

}

You can also call the getCallStatus method on the Call object to get the status of the call.

The following table gives the possible status codes:

Status Code Meaning

UNINITIALIZED The Call object has been created, but not initialized

SETUP Call is in process of being set up

ALERTING The call is an incoming one which is alerting (ringing)

RINGING An outgoing call is ringing at the remote end

MEDIA_PENDING The call is connected, and waiting for media

IN_CALL The call is fully set up, including media

BUSY Dialed number is busy

© 2018 CaféX | Confidential Page 85

Status Code Meaning

NOT_FOUND Dialed number is unreachable or does not exist

TIMED_OUT The dialing operation timed out without a response from the dialed num-

ber

NO_MB_CAPACITY The media broker has reached its full capacity

REQUEST_TERMINATED The request was terminated by the network

TEMPORARILY_

UNAVAILABLE

Something necessary to set up the call was unavailable on the network

MEDIA_UNAVAILABLE Unable to access media

ERROR The call has errored

ENDED The call has ended

Adding Application Event Distribution

The UC object also provides access to the AED object, which is the starting point for all Application Event

Distribution (AED) operations.

An AED application will:

1. Access the AED object to create a Topic object

2. Add a TopicListener to the Topic object

3. Connect to the Topic

4. Call methods on the Topic object (apart from disconnect) to change data on the topic or send mes-

sages to other subscribers to the topic.

5. Disconnect from the topic when it no longer wants to receive notifications.

Creating and Connecting to a Topic

The client application can create a topic using the createTopic method on the AED object. This call cre-

ates a client-side representation of a topic and automatically connects to it (for simplicity this implements

the TopicListener interface):

uc.getAED().createTopic("my topic", this);

© 2018 CaféX | Confidential Page 86

If it succeeds, the TopicListener receives the onTopicConnected notification. In the notification, itl

receives a Topic object representing the topic, and a Map containing the data items (in the form of key-

value pairs) which are currently associated with the topic. The application can add data, disconnect, send

messages, and so on, by calling methods on the Topic object.

If the topic creation fails, the TopicListener receives an onTopicNotConnected notification.

Note: You should give each topic you create a unique name. If the topic already exists on the server, you

will simply be connected to it.

Topic Expiry

There is another version of createTopic which takes an expiry time in addition to the topic name and

the listener. This allows you to set an expiry time for the topic (in minutes); if the topic is inactive for that

amount of time, the server automatically deletes it. A topic created without an expiry time remains on the

server indefinitely, until explicitly deleted by a subscriber (see the Unsubscribing from a Topic section

on the next page).

onTopicConnected

After connecting to the topic, the listener receives an onTopicConnected callback. (In the case of failure,

it will receive an onTopicNotConnected callback, containing the topic and an error message.) The

onTopicConnected callback has two parameters, the Topic object, and a Map which contains an object

(under the key data), which represents all the data currently associated with the topic. This object is a

List of LinkedHashMap objects, each of which contains the data item's key and value. The application

can iterate through the data items to display them to the newly connected user:

public void onTopicConnected(Topic topic, Map<String, Object> data)

{

List<LinkedHashMap<String, Object>> dataList =
(List<LinkedHashMap<String, Object>>)data.get("data");

Iterator<LinkedHashMap<String, Object>> it = dataList.iterator();

LinkedHashMap<String, Object> pair;

Boolean deleted;

String key, value;

while (it.hasNext())

{

pair = it.next();

deleted = (Boolean)pair.get("deleted");

key = (String)pair.get("key");

© 2018 CaféX | Confidential Page 87

value = (String)pair.get("value");

// Display data

}

}

Unsubscribing from a Topic

You disconnect from a topic by calling the Topic object's disconnect method; it takes a single para-

meter which allows you to choose whether to delete the topic from the server or not. Passing in false for

this parameter leaves the topic in place on the server; passing in true destroys the topic on the server (and

disconnects any other clients connected to the same topic).

...

topic.disconnect(true);

...

public void onTopicDeleted(Topic topic, String message)

{

// Actions to take when topic successfully deleted

}

You receive a notification, one of onTopicDeleted or onTopicNotDeleted, if you have chosen to

delete the topic. Other users receive an onTopicDeletedRemotely notification if the delete was suc-

cessful.

Note: If you choose to merely unsubscribe from the topic without deleting it (by calling

topic.disconnect(false)), then you will not see any notifications that the unsubscribe has been suc-

cessful. Nor will other subscribers receive any notification that you have unsubscribed.

onTopicDeletedRemotely

All clients connected to the topic receive a onTopicDeletedRemotely callback when the topic is deleted

from the server, whether as a result of any client deleting it, or of the topic expiring on the server (see the

Topic Expiry section on the previous page for details of topic expiry). Once a topic has been deleted, the

client should not call any of that topic's methods (which will fail in any case), and should consider itself

unsubscribed from that topic. If a topic with the same name is subsequently created, it is a new topic, and

the client will not be automatically subscribed to it.

© 2018 CaféX | Confidential Page 88

Publishing Data to a Topic

Once connected to a topic, the client application can add data to it by calling the submitData method,

passing in a key and a value.

...

topic.submitData("foo", "bar");

...

public void onTopicSubmitted(Topic topic, String key, String value, int
version)

{

// Actions for data submitted successfully

}

If the submission is successful, the TopicListener receives an onTopicSubmitted notification; oth-

erwise, it receives an onTopicNotSubmitted notification. The onTopicSubmitted notification con-

tains the topic, key, and value of the data submitted, and a version parameter, which indicates how

many times the value for this key has been changed. By tracking the version, you can check whether

the data you have just submitted is actually the current data for the key on the topic.

When you submit data to the topic, users connected to the topic receive an onTopicUpdate notification,

containing the data which you have submitted.

onTopicUpdated

A client receives a onTopicUpdated callback when any client connected to the topic makes a change to a

data item on that topic. The callback contains the key, value, and version parameters detailed pre-

viously (value contains the new value), and an additional deleted parameter, which will be true if the

data item was deleted from the server (see the Deleting Data from a Topic section below).

Deleting Data from a Topic

The client application can delete data from the topic by calling the deleteData method, passing in the

key under which the data is stored on the topic.

...

topic.deleteData("foo");

...

public void onDataDeleted(Topic topic, String message)

{

// Actions when data successfully deleted

}

© 2018 CaféX | Confidential Page 89

The application receives notifications onDataDeleted or onDataNotDeleted. Other users will receive

an onTopicUpdated notification in which the deleted parameter is true.

Sending a Message to a Topic

The application can send a message to a topic using the sendAedMessage method.

...

topic.sendAedMessage("Hello World!");

...

public void onTopicSent(Topic topic, String message)

{

// Actions to take when message successfully sent

}

If the message is sent successfully, you receive an onTopicSent notification; otherwise, you receive

onTopicNotSent. Other users connected to the topic receive an onMessageReceived notification.

onMessageReceived

The TopicListener will receive an onMessageReceived callback whenever any client connected to the

topic (including itself) sends a message to the topic. It contains the topic parameter, and the message

parameter containing the text of the sent message.

Self-Signed Certificates

If you are connecting to a server that uses a self-signed certificate, you have two options:

1. Make use of the setTrustManager and setHostNameVerifier methods on the UC object to per-

form your own validation (which could be to allow any connection) of the SSL connection.

2. Add the server certificate and the associated CA root certificate to the Credential Storage on your cli-

ent.

You can obtain the server certificate and CA root certificate through the FAS Administration screens. The

FAS Administration Guide explains how to view and export certificates. You need to obtain the HTTPS

Identity Certificate (server certificate) and the Trust Certificate (CA root certificate) that has signed your

server certificate.

Once you have exported and downloaded the two certificates, they need to be copied to your client. Please

follow the user documentation for your device to install the certificates.

© 2018 CaféX | Confidential Page 90

You should then view the installed server certificate through the appropriate tool (Android Settings-

>Security->Credential Storage) and confirm that the server certificate is trusted. If it is, then your applic-

ation should be able to connect to the server.

Bluetooth Support

An FCSDK application can support Bluetooth devices using the AudioDeviceManager class; a single

instance of this class is available on the Phone object which controls the call. While this is in use, FCSDK

will:

n Automatically send audio output to a Bluetooth headset when one becomes available.

n Send audio output to a wired headset if one is available and there is no Bluetooth device connected.

n Send audio output to another audio device if neither a headset nor a Bluetooth device is available.

Using the AudioDeviceManager, the application can:

n Receive notifications when devices become, or cease to be, available (such as when a wired headset is

plugged in or unplugged, or when a Bluetooth device goes in or out of range), in order to change the

above behavior. See the Using the Listener section on the next page.

n Define which audio output on the phone should handle the audio if neither a Bluetooth device nor a

headset is available.

n Define a default audio output on the phone, which will handle the audio if neither a Bluetooth device nor

a headset is available, and the application has not selected a specific audio device.

n Get a list of available audio outputs on the phone

n Determine which of the phone's audio outputs currently handles the audio

Note: Internally, AudioDeviceManager uses methods of the Android AudioManager class. Application

code can still call methods of this class directly, but does not need to call methods such as

setSpeakerPhoneOn; instead, it can use AudioDeviceManager.setAudioDevice. When calling

AudioManager methods directly, take care that doing so does not interfere with the workings of the

AudioDeviceManager.

© 2018 CaféX | Confidential Page 91

Starting and Stopping AudioDeviceManager

The Phone object starts the AudioDeviceManager automatically, so that the application can use the

AudioDeviceManager methods as soon as the Phone object is available:

AudioDeviceManager adm;

public void onSessionStarted()

{

...

adm = uc.getPhone().getAudioDeviceManager();

adm.addListener(this);

...

}

The application can call these methods to set the audio devices which the phone should use for calls made

or received by the application. Calls which are not handled by the FCSDK application are unaffected, and

use the phone's default behavior.

The listener interface (this in the above example) should be a class which implements

AudioDeviceManagerListener, which has a single method, getDeviceListChanged. The

AudioDeviceManager will call getDeviceListChanged when it becomes aware of a change to the list

of available devices, or to the selected device. It will make the check for available devices (and possibly

change the selected device, if the preferred device has become available) when a wireless headset is plugged

in, or a Bluetooth headset becomes available; the application can also trigger the check by calling

updateAudioDeviceState. See the Using the Listener section below.

There may be occasions when the application does not wish to use AudioDeviceManager. In order to

return to the Android device's default behavior, the application can call stop:

phone.getAudioDeviceManager().stop();

To switch back to using the AudioDeviceManager, the application can call start:

phone.getAudioDeviceManager().start();

Using the Listener

AudioDeviceManager sends output to available devices in the following order:

1. Bluetooth device

2. Wired headset

© 2018 CaféX | Confidential Page 92

3. The device selected by the application (see the Setting the Audio Device section below)

4. The default device (see the Setting the Default Device section on the next page)

When the set of available devices changes (for instance, if a wired headset is unplugged, or a paired

Bluetooth device comes into range), FCSDK will start to send audio to the first available device in the above

list. Thus, the audio will switch to a Bluetooth device as soon as one becomes available; and if a wired

headset is plugged in (when a Bluetooth device is not connected), it will switch to that.

This (Bluetooth takes precedence over headset, which takes precedence over the speaker or earpiece) is the

most likely requirement; but the application can override this behavior by setting the preferred device in the

AudioDeviceManagerListener.onDeviceListChanged method:

AudioDeviceManager adm;

public void onSessionStarted()

{

...

adm = uc.getPhone().getAudioDeviceManager();

adm.addListener(this);

...

}

void onDeviceListChanged(Set<AudioDevice> availableDevices, AudioDevice
selectedDevice)

{

if (availableDevices.contains(AudioDevice.WIRED_HEADSET)

&& (selectedDevice != AudioDevice.WIRED_HEADSET))

{

adm.setAudioDevice(AudioDevice.WIRED_HEADSET);

}

}

The above code sends a call's audio to the wired headset, even when a Bluetooth device is connected.

Note: The list of available devices which AudioDeviceManager passes to onDeviceListChanged will

not necessarily contain all the devices which exist on the phone; see the Listing Available Devices sec-

tion on page 95.

Setting the Audio Device

The application can set the device which handles audio for the call:

phone.getAudioDeviceManager().setAudioDevice(AudioDevice.BLUETOOTH);

© 2018 CaféX | Confidential Page 93

The argument to the method must be one of the members of the AudioDevice enumeration:

n NONE

The application has no preference, and will accept the default behavior of the phone.

n SPEAKER_PHONE

Audio is sent to the loudspeaker in the phone, and is audible to others in the vicinity. Audio input is

from the phone's internal microphone.

n WIRED_HEADSET

Audio goes to a device attached to the jack in the phone. If this device has a microphone, that is used

for audio input.

n EARPIECE

Audio is sent to the internal speaker, and received from the internal microphone. The user will have

to hold the phone to their ear during the call.

n BLUETOOTH

Audio is sent to and received from a paired Bluetooth device.

Note: The phone will not necessarily use the device which the application tries to set. When it sets the

audio device, AudioDeviceManager checks to see whether the selected device is in the list of available

devices, and if it is not, chooses either another device or the default device set by the application (see the

Setting the Default Device section below). It does this without throwing an exception.

Setting the Default Device

The application can set a fallback device in case the preferred device is unavailable:

phone.getAudioDeviceManager().setDefaultAudioDevice(AudioDevice.EARPIECE);

The argument is one of the values from the AudioDevice enumeration (see the Setting the Audio

Device section on the previous page).

Setting the default device establishes a fallback option in case neither a Bluetooth device nor a wired head-

set is available. As such, the application can only set it to either EARPIECE or SPEAKER_PHONE, and if an

earpiece is not available (a tablet will not have an earpiece, for instance), AudioDeviceManager will only

© 2018 CaféX | Confidential Page 94

allow it to set it to SPEAKER_PHONE. The default value (if the application never calls

setDefaultAudioDevice) is SPEAKER_PHONE.

Listing Available Devices

The application can get a list of available audio devices by calling the getAudioDevices method:

Set<AudioDevice> devices = phone.getAudioDeviceManager().getAudioDevices();

The resulting set contains members of the AudioDevice enumeration, taken from the connected devices

known to the phone. The list of available devices will not necessarily contain all the devices which exist on

the phone. In particular, if it includes WIRED_HEADSET, it will not include EARPIECE or SPEAKER_PHONE,

because it considers these to be mutually exclusive. For a phone, the list of available devices may be:

n BLUETOOTH, WIRED_HEADSET

n BLUETOOTH, SPEAKER_PHONE

n BLUETOOTH, SPEAKER_PHONE, EARPIECE

n WIRED_HEADSET

n SPEAKER_PHONE

n SPEAKER_PHONE, EARPIECE

A tablet is not likely to have an earpiece.

The application can also find which device is currently being used as the audio device:

AudioDevice device = phone.getAudioDeviceManager().getSelectedAudioDevice();

This will work whether the preferred device has been set explicitly (using setAudioDevice) or not.

Responding to Network Issues

As Fusion Client SDK is network-based, it is essential that the client application is made aware of any

loss of network connection. When it loses a network connection, the server uses SIP timers to determine

how long to keep the session alive before reallocating the relevant resources. Any application you develop

should make use of the available callbacks in the Fusion Client SDK API, and any other available tech-

nologies, to handle network failure scenarios.

To receive callbacks relating to network issues, the application must implement the UCListener interface.

© 2018 CaféX | Confidential Page 95

Reacting to Network Loss

In the event of network connection problems, the SDK automatically tries to re-establish the connection. It

will make seven attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s. A call to

onConnectionRetry on the UCListener precedes each of these attempts. The callback supplies the

attempt number and the delay in seconds before the next attempt in its two parameters.

When all reconnection attempts are exhausted, the UCListener receives the onConnectivityLost call-

back, and the retries stop. At this point the client application should assume that the session is now

invalid. The client application should then log out of the server and reconnect via the web app to get a new

session, as described in the Creating the Session section on page 15.

If any of the reconnection attempts succeeds, the UCListener receives the

onConnectionReestablished callback.

Note: The retry intervals, and the number of retries attempted by the SDK are subject to change in future

releases. Do not rely on the exact values quoted above.

Reacting to Network Changes

If the issues with the network are caused by a temporary loss of connectivity (for example, when moving

between two Wi-Fi networks, or from a Wi-Fi network to a cellular data connection), the client application

should not log out from the session and log back in (as described in the Reacting to Network Loss sec-

tion above), as all session state will be lost.

To avoid this, the client application should register with the OS to be told of network reachability changes,

using the ConnectivityManager class. When the OS notifies the application that the network has

changed, it should pass these details on to the UC instance by calling the setNetworkReachable

method.

When the application starts, it should check for reachability. When the network is reachable, call

UC.setNetworkReachable(true). Until this call is made, FCSDK will not try to make a session con-

nection to the server.

If the network reachability drops after a session has been established, the client application needs to call

UC.setNetworkReachable(false).

© 2018 CaféX | Confidential Page 96

If network reachability changes from a cellular data connection to Wi-Fi or vice versa, call

UC.setNetworkReachable(false) followed by UC.setNetworkReachable(true) to disconnect

from the first network and re-register on the second.

Network Quality Callbacks

During a call, the application can receive callbacks on the quality of the network by implementing the

onInboundQualityChanged method of the CallListener.

void onInboundQualityChanged(Call call, int inboundQuality)

{

// Show indication of quality

}

The inboundQuality parameter is a number between 0 and 100, where 100 indicates perfect quality.

The application might choose to show a bar in the UI, the length of the bar indicating the quality of the con-

nection.

The SDK starts collecting metrics as soon as it receives the remote media stream. It does this every 5s, so

the first quality callback fires roughly 5s after this remote media stream callback has fired.

The callback then fires whenever a different quality value is calculated; so if the quality is perfect then

there will be an initial quality callback with a value of 100 (after 5s), and then no further callback until the

quality degrades.

© 2018 CaféX | Confidential Page 97

Creating an OSX Client Application

Fusion Client SDK enables you to develop OSX applications offering users the following methods of com-

munication:

n Voice calling

Fusion Client SDK provides you with an OSX SDK and a network infrastructure which integrate seam-

lessly with your existing SIP infrastructure.

To develop OSX applications using Fusion Client SDK requires Xcode 4.5 or later.

The Fusion Client SDK for OSX is made up of the following classes:

n The top-level ACBUC class and its delegate protocol ACBUCDelegate.

n Two classes for voice calling:

n ACBClientPhone and its delegate protocol ACBClientPhoneDelegate.

n ACBClientCall and its delegate protocol ACBClientCallDelegate.

The OSX SDK reference documentation, including a full list of available methods and their associated call-

backs, is delivered in the docs.zip file. Open index.html to view the API documentation.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

To set up a project including the Fusion Client SDK, first create a new project and add OSX native frame-

works to it:

1. Open Xcode and choose to create a Cocoa Application, giving your project an appropriate name. The

following code samples use the example name ‘WebrtcClientOSX’.

2. Click the Build Phases tab, and expand the Link Binary with Libraries section by clicking on the title.

3. Click the + button to display the file explorer.

© 2018 CaféX | Confidential Page 98

4. Select the following OSX native dependencies from the OSX folder:

n Cocoa.framework

n QuartzCore.framework

The dependencies you selected are now displayed in the Link Binary with Libraries section.

Add the Fusion Client SDK framework to your project:

1. Select your project and click the Build Phases tab.

2. Expand the Link Binary with Libraries section by clicking on the title.

3. Click the + button. When the file explorer displays, click Add Other.

4. Navigate to the Frameworks/ACBClientSDK.framework folder, select it and click OK.

Initializing the ACBUC Object

The application accesses the API initially via a single object, ACBUC. To set up all the functionality to

which the user has access, the application needs to obtain a session ID from the Web Application (see the

Creating the Web Application section on page 14), and initialize the ACBUC object using it. Once it has

received the Session ID, the client application must call the ucWithCofiguration method on the ACBUC:

- (void) initialize

{

NSString* sessionId = [self getSessionId];

ACBUC* uc = [ACBUC ucWithConfiguration:sessionId delegate:self];

[uc startSession];

}

- (void) ucDidStartSession:(ACBUC *)uc

{

...

}

The delegate (in this case self) must implement the ACBUCDelegate protocol. Once the session has star-

ted, FCSDK calls the delegate method ucDidStartSession, and the application can make use of the

ACBUC object. (If the session does not start, one of the delegate's error methods is called.)

© 2018 CaféX | Confidential Page 99

Adding Voice

Once the application has initialized the ACBUC object, it can retrieve the ACBClientPhone object. It can

then use the phone object to make or receive calls, for which it returns ACBClientCall objects. Each one

of those objects has a delegate for notifications of errors and other events.

Making a Call

In the following example, the application makes a call (using createCallToAddress on the

ACBClientPhone object) as soon as the session has started (see the Initializing the ACBUC Object sec-

tion on the previous page):

- (void) ucDidStartSession:(ACBUC *)uc

{

ACBClientPhone* phone = uc.phone;

phone.delegate = aPhoneDelegate;

phone.previewView = previewView;

ACBClientCall* call = [phone createCallToAddress:calleeAddress
withAudio:ACBMediaDirectionSendAndReceive withVideo:ACBMediaDirectionNone
delegate:aCallDelegate];

call.videoView = aVideoView;

}

You can change the values of the withAudio parameter to make the call one way; the withVideo para-

meter should always be ACBMediaDirectionNone. Valid values are:

n ACBMediaDirectionNone

n ACBMediaDirectionSendOnly

n ACBMediaDirectionReceiveOnly

n ACBMediaDirectionSendAndReceive

Note: The older form, createCallToAddress:audio:video:delegate:, which took two boolean val-

ues, is now deprecated.

Receiving a Call

FCSDK invokes the ACBClientPhoneDelegate didReceiveCall delegate method when it receives an

incoming call. The application can answer the incoming call by calling its

answerWithAudio:andVideo: method:

- (void) phone:(ACBClientPhone*)phone didReceiveCall:(ACBClientCall*)call

© 2018 CaféX | Confidential Page 100

{

[call answerWithAudio:ACBMediaDirectionSendAndReceive
video:ACBMediaDirectionNone]

}

To reject the call, use [call end].

You can change the values of the parameters to answer the call with a specific direction for audio. Valid

values are:

n ACBMediaDirectionNone

n ACBMediaDirectionSendOnly

n ACBMediaDirectionReceiveOnly

n ACBMediaDirectionSendAndReceive

Note:

n The older form, which took two boolean values, is now deprecated.

n The options specified in the answer affect both sides of the call; that is, if the remote party placed an

audio and video call, and the local application answers as audio only (as an OSX application must),

then neither party sends or receives video.

n If your application plays its own ringing tone, please note that the OSX SDK makes calls to the

AVAudioSession sharedInstance object when establishing a call. For this reason, we recom-

mend waiting until you receive a call status of ACBClientCallStatusRinging (from

ACBClientCallDelegate didChangeStatus) before calling AVAudioSession

sharedInstance methods.

n Video is not supported in this release of the OSX Fusion Client SDK, so only

ACBMediaDirectionNone is valid for the video direction.

Video Views and Preview Views

Video is not supported in this release of the OSX Fusion Client SDK.

Muting the Local Audio Stream

During a call the application can mute or unmute the local audio stream. Muting the stream stops it being

sent by the user to the remote party; however the user will still receive any stream that the remote party

sends.

© 2018 CaféX | Confidential Page 101

To mute the audio stream use the enableLocalAudio method of the call:

- (void) incomingCallReceived:(ACBClientCall*)call

{

self.call = call;

[call answerWithAudio:YES video:NO];

}

- (void) muteButtonPressed:(UIButton*)button

{

[self.call enableLocalAudio:NO];

}

Holding and Resuming a Call

During a call the application can put a call on hold (for example, in order to make or receive another call).

Placing the call on hold pauses both the stream sent by the user and the stream sent by the remote party;

only the party who placed the call on hold can resume it.

- (void) phone:(ACBClientPhone*)phone didReceiveCall:(ACBClientCall*)call

{

[call answerWithAudio:YES video:NO]

}

- (void) holdButtonPressed:(UIButton*)button

{

[call hold];

}

- (void) resumeButtonPressed:(UIButton*)button

{

[call resume];

}

DTMF Tones

Once a call is established, an application can send DTMF tones on that call by calling the playDTMFCode

method of the ACBClientCall object:

[call playDTMFCode:@"#123*" localPlayback:YES];

n The first parameter can either be a single tone, (for example, 6), or a sequence of tones (for example,

#123,*456). Valid values for the tones are those characters conventionally used to represent the

standard DTMF tones: 0123456789ABCD#*.

Note: The comma indicates that there should be a two second pause between the 3 and the * tone.

© 2018 CaféX | Confidential Page 102

n The second parameter is a boolean which indicates whether the application should play the tone

back locally so that the user can hear it.

Handling Multiple Calls

Applications developed with Fusion Client SDK for OSX do not support multiple simultaneous calls:

Monitoring the State of a Call

A call transitions through several states, and the application can monitor these by assigning a delegate to

the call:

- (void) phone:(ACBClientPhone*)phone didReceiveCall:(ACBClientCall*)call

{

call.delegate = self;

...

}

Each state change fires the call:didChangeStatus: delegate method. As the outgoing call progresses

toward being fully established, the application receives a number of calls to didChangeStatus, con-

taining one of the ACBClientCallStatus enumeration values each time.

The application can adjust the UI by switching on the value of the status parameter, to give the user suit-

able feedback, for example by playing a local audio file for ringing or alerting:

- (void) call: (ACBClientCall*)call didChangeStatus:(ACBClientCallStatus)
status

{

switch (status)

{

case ACBClientCallStatusRinging:

[self playRingtone];

break;

case ACBClientCallStatusInCall:

[self stopRinging];

break;

case ACBClientCallStatusEnded:

case ACBClientCallStatusBusy:

case ACBClientCallStatusError:

case ACBClientCallStatusNotFound:

case ACBClientCallStatusTimedOut:

[self updateUIForEndedCall];

break;

default:

© 2018 CaféX | Confidential Page 103

break;

}

}

The following table gives the possible status codes:

Status code Meaning

ACBCallStatusSetup Call is in process of being set up

ACBCallStatusAlerting The call is an incoming one which is alerting (ringing)

ACBCallStatusRinging An outgoing call is ringing at the remote end

ACBCallStatusMediaPending The call is connected, and waiting for media

ACBCallStatusInCall The call is fully set up, including media

ACBCallStatusBusy Dialed number is busy

ACBCallStatusNotFound Dialed number is unreachable or does not exist

ACBCallStatusTimedOut Dialing operation timed out without a response from the dialed num-

ber

ACBCallStatusError An error has occurred on the call. such the media broker reaching its

full capacity, the network terminating the request, or there being no

media.

ACBCallStatusEnded The call has ended

Threading

The application must make all method invocations on the SDK, even to access read-only properties, from

the same thread. This can be any thread, and not necessarily the main thread of the application. Internally,

the SDK may use other threads to increase responsiveness, but any delegate callbacks will occur on the

same thread that is used to initialize the SDK.

Self-Signed Certificates

If you are connecting to a server that uses a self-signed certificate, you need to add that certificate, and the

associated CA root certificate, to the keychain on your client.

© 2018 CaféX | Confidential Page 104

You can obtain the server certificate and CA root certificate through the FAS Administration screens. The

FAS Administration Guide explains how to view and export certificates. You need to extract the HTTPS

Identity Certificate (server certificate) and the Trust Certificate (CA root certificate) that has signed your

server certificate.

Once you have exported and downloaded the two certificates, you need to copy them to your client. Please

follow the user documentation for your device to install the certificates.

You should then view the installed server certificate through the appropriate tool (iOS Settings->General-

>Profiles or OSX Keychain) and confirm that the server certificate is trusted. If it is, then your application

should connect to the server.

Alternatively, you can use the acceptAnyCertificate method of the ACBUC object before calling

startSession, although this should only be used during development:

ACBUC* uc = [ACBUC ucWithConfiguraton:sessionId stunServers:stunServers
delegate:self];

[uc acceptAnyCertificate:TRUE];

[uc startSession];

Note: Since iOS 9, you also need to add a setting to your application's plist file to allow connection to a

server using self-signed certificates. Set Allow Arbitrary Loads under App Transport Security Settings

to YES.

Responding to Network Issues

As the OSX SDK is network-based, it is essential that the client application is aware of any loss of con-

nection. Fusion Client SDK does not dictate how you implement network monitoring; however, the

sample application uses the SystemConfiguration framework.

Depending on the nature of the issues with the network, the client application should react differently.

Reacting to Network Loss

In the event of network connection problems, the SDK automatically tries to re-establish the connection. It

will make seven attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s. A call to the

willRetryConnectionNumber:in:] on the ACBUCDelegate precedes each of these attempts. The call-

back supplies the attempt number (as an NSUInteger) and the delay before the next attempt (as an

NSTimeInterval) in its two parameters.

© 2018 CaféX | Confidential Page 105

When all reconnection attempts are exhausted, the ACBUCDelegate receives the

ucDidLoseConnection callback, and the retries stop. At this point the client application should assume

that the session is invalid. The client application should then log out of the server and reconnect via the

web app to get a new session, as described in the Creating the Session section on page 15.

If any of the reconnection attempts are successful, the ACBUCDelegate receives the

ucDidReestablishConnection callback.

Note that both the willRetryConnectionNumber and ucDidReestablishConnection are optional,

so the application may choose to not implement them. The connection retries are attempted regardless.

Note: The retry intervals, and the number of retries attempted by the SDK are subject to change in future

releases. Do not rely on the exact values given above.

Reacting to Network Changes

If the issues with the network are caused by a temporary loss of connectivity (for example, when moving

between two Wi-Fi networks, or from a Wi-Fi network to a cellular data connection), the client application

should not log out from the session and log back in (as described in the Reacting to Network Loss sec-

tion on the previous page), as all session state will be lost.

To avoid this, the client application should register with iOS to receive notification of changes in network

reachability. When iOS notifies the client application that the network has changed, the application should

pass these details to the ACBUC instance.

When the client application starts, it should check for network reachability. When the network is reach-

able, the application calls ACBUC setNetworkReachable:YES; until this call is made, the application

does not attempt to create a session.

If the network reachability drops after a session has been established, the client application needs to call

ACBUC setNetworkReachable:NO.

If the network reachability changes from a cellular data connection to a Wi-Fi network, or vice versa, the

client application should call ACBUC setNetworkReachable:NO followed by ACBUC

setNetworkReachable:YES to disconnect from the first network and re-register on the second.

© 2018 CaféX | Confidential Page 106

Creating a Windows Client Application

Fusion Client SDK enables you to develop Windows applications that offer users the ability to make voice

and video calls.

Fusion Client SDK provides you with a Windows SDK and a network infrastructure which integrate seam-

lessly with your existing SIP infrastructure.

The Fusion Client SDK for Windows is made up of the following main classes:

n The top-level UC class and it's corresponding UCListener interface.

n Phone and PhoneListener, for creating and receiving calls.

n Call and CallListener, for working with calls.

n AED, Topic, and TopicListener, for working with Application Event Distribution

The listener classes are interface classes that define pure virtual functions that the application is expected

to implement in order to receive the notifications defined by that interface.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

To set up a project including the Fusion Client SDK, you first need to create a new project and add SDK

native libraries and headers:

1. Extract the Client SDK archive to a directory that will be referred to by your new project, as described

in the following steps,

2. Open Visual Studio, and select File->New Project... ,

3. Select your preferred project template, name etc then click OK to create the project,

4. In the Solution Explorer view, right-click the project name and choose Properties from the menu,

5. Select All Configurations from the Configuration: combo box,

6. In the C/C++ ->General section, add the CSDK csdk-sample\target\lib\fcsdk\include directory

© 2018 CaféX | Confidential Page 107

(from step 1) to the Additional Include Directories,

7. In the Linker->Input section, add the csdk-sample\target\lib\fcsdk\Release\ClientSDKWin.lib

library (from step 1) to the Additional Dependencies.

Initializing the UC and Starting the Session

The application initially accesses the API via a single object, UC. To set up all the functionality to which the

user has access, the application needs to obtain a session ID from the Web Application (see the Creating

the Web Application section on page 14), and initialize the UC object using it. Once it has received the

Session ID, the client application must create the UC object, then call its StartSession method:

std::string stun = "[{'url': 'stun:stun.1.google.com:19302'}]";

uc = std::make_unique<UC>(sessionID, stun, this);

uc->StartSession();

The first line in this sample creates the UC object using the session ID string obtained from the Gateway. It

also registers this as the UCListener object, which implies that this must be an instance of a class

that extends the UCListener interface class. Of course, you may wish to have a different object act as the

UCListener.

The second parameter is a list of STUN servers in the form of a JSON string. STUN servers are not neces-

sary if the Gateway is not behind a firewall, so that Network Address Translation is not needed; in that

case the array can be empty ("[]"). You can provide your own STUN server instead of the public Google

one above; and you can provide more than one in the array, in which case they will be tried in sequence

until FCSDK finds a working one.

In the second line, the UC tries to start the session; the UCListener object receives asynchronous noti-

fication that the session has started or failed:

void MyUCListener::OnSessionStarted()

{

uc->GetPhone()->SetListener(this);

}

The implementation of OnSessionStarted obtains the Phone class from the UC, and registers this as

the listener. This implies that this must be a class that extends the PhoneListener interface class.

Again, you may use a different class as the phone listener.

© 2018 CaféX | Confidential Page 108

The primary purpose of the PhoneListener is to receive notification of incoming calls (see the Receiv-

ing a Call section on the next page).

The failure notification is OnSessionNotStarted() .

Adding Voice and Video

After the application has created the UC object, it can retrieve the Phone object. Once the application has

been notified that the session has started, it can use the Phone object to make or receive calls; calls are rep-

resented by Call objects. Each of the UC, Phone, and Call objects have corresponding listener interfaces

that the application can implement in order to receive error notifications and other events.

Adding a Preview Window before a Call is made

If you want to add a preview window (a window which displays the video which is being sent to the other

endpoint) before a call is established, you can call the Phone::SetPreviewViewName method. An appro-

priate time to do this is in the UCListener::OnSessionStarted callback:

void MyUCListener::OnSessionStarted()

{

uc->GetPhone()->SetPreviewViewName("local");

};

Making a Call

Once you have created the session, you can start making calls. Create a Call object from the Phone

object :

CallPtr call = uc->GetPhone()->CreateCall("1234",

MediaDirection::SEND_AND_RECEIVE,

MediaDirection::SEND_AND_RECEIVE, this);

In this example, 1234 is the number to dial, the two MediaDirection parameters indicate that we want

the call to be an audio and video call respectively, and the final parameter registers this as the

CallListener.

The CreateCall() function returns the newly created call (CallPtr is a typedef for std::shared_

ptr<Call>).

The CreateCall method returns a Call object immediately, but the application should not use it until

the CallListener receives the asynchronous notification that the call creation has succeeded.

© 2018 CaféX | Confidential Page 109

You can change the values of the media direction parameters to make the call audio only or video only.

They must be members of the MediaDirection enumeration:

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

Note: The older form of CreateCall, which took two boolean values, is now deprecated.

Receiving a Call

FCSDK invokes the PhoneListener object that you registered with the Phone object when it receives an

incoming call:

void MyPhoneListener::OnIncomingCall(CallPtr call)

{

call->Answer(MediaDirection::SEND_AND_RECEIVE, MediaDirection::SEND_AND_
RECEIVE);

}

In this example the application auto-answers the call; most applications will notify the user before invoking

either call->Answer() to accept, or call->End() to reject, the call.

The two parameters to the Answer() method indicate whether to answer the call with audio and video

respectively. They are members of the MediaDirection enumeration:

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

Note: The older form of Answer, which took two boolean values, is now deprecated.

Displaying Video

Your application can display both video received from the remote peer, and a preview of the locally cap-

tured video that it sends to the remote peer. You display video in your application using two classes

provided by the Windows SDK: VideoView and ImagePipeServer.

© 2018 CaféX | Confidential Page 110

The VideoView class is provided by the SDK to paint video image data to a device context (HDC) provided

by your application.

The ImagePipeServer is a base class that your application will need to provide a concrete imple-

mentation of, in order to receive image data and pass it on to the VideoView:

shared_ptr<VideoView> remoteView = make_shared<VideoView>("Remote Video");

view->SetRefreshViewFunc(std::bind(&MyController::RedrawRemoteView, this));

shared_ptr<MyPipeServer> remotePipe = make_shared<MyPipeServer>("Remote
Video", remoteView);

call->SetVideoViewName("Remote Video");

The first line creates a VideoView with a unique name for the remote view. The second line sets a refresh

function for the view; this refresh function is invoked every time there is a new video frame to render. The

application should implement it to invalidate the user interface element that displays the video. The third

line creates an instance of the subclass of ImagePipeServer, giving it the name and reference of the

VideoView. The fourth line tells the Call object the name of the VideoView to use for displaying the

remote video.

When the SDK receives a video frame from the remote peer, it invokes SendImageToView on your

ImagePipeServer subclass. Your implementation of this method must pass the image data on to the

VideoView:

void MyPipeServer::SendImageToView()

{

VideoViewImageData img = GetImageData();

remoteView->SetImageData(img);

RefreshViewFunc func = remoteView->GetRefreshViewFunc();

func();

}

This code updates the video data and triggers your refresh function. When your user interface video ele-

ment redraws, you can simply pass the HDC to the VideoView to paint the new video frame:

remoteView->Paint(hdc, region);

Muting Local Audio and Video Streams

Muting the local streams stops audio or video from being sent to the remote party (audio and video

received from the remote party is not affected).

The following example shows an application muting both audio and video in response to a mute button

being pressed in the user interface:

© 2018 CaféX | Confidential Page 111

void MyUIController::MuteButtonPressed()

{

call->EnableLocalAudio(false);

call->EnableLocalVideo(false);

}

You can also mute the audio and video streams as soon as the call is answered by supplying RECEIVE_

ONLY as the media direction:

void MyPhoneListener::OnIncomingCall(CallPtr call)

{

call->Answer(MediaDirection::RECEIVE_ONLY, MediaDirection::RECEIVE_ONLY);

}

Holding and Resuming a Call

Your application can place a call on hold, and subsequently resume the call. When a call is on hold, no

audio or video is played to either end of the call. Only the party that placed the call on hold can resume it.

void MyUIController::HoldButtonPressed()

{

call->Hold();

}

void MyUIController::ResumeButtonPressed()

{

call->Resume();

}

Sending DTMF Tones

Your application can send DTMF tones on a call:

call->SendDTMF("#123*", true);

This example sends five tones sequentially. To send a single tone just use a single-character string.

The boolean parameter indicates whether or not you want the tones to also be played back locally, so that

the user of your application can hear them.

Valid values in the string parameter are those conventionally used to denote DTMF tones:

0123456789#*. A comma character inserts a two-second pause into a sequence of tones.

Handling Multiple Calls

Applications developed with the Fusion Client SDK for Windows do not support multiple simultaneous

calls.

© 2018 CaféX | Confidential Page 112

Setting Video Resolution

Your application can configure both the resolution and frame rate of the video it sends to the remote party

in a video call. You set the video resolution on the Phone object:

phone->SetPreferredCaptureResolution(VideoCaptureResolution::RESOLUTION_
1280x720);

The VideoCaptureResolution enumeration class defines the set of resolutions available to your applic-

ation.

You can also set the frame rate:

phone->SetPreferredCaptureFrameRate(20);

Note: Changes to the video resolution and frame rate apply only to new calls; the resolution of existing

calls are not affected.

Monitoring the State of a Call

During call setup, the call transitions through several states, from the initial setup to being connected with

media available (or failure). You can monitor these states using the onStatusChanged method of

CallListener. Switching on the value of the CallStatus enumeration allows the application to adjust

the UI to give the user suitable feedback, such as by playing a local audio file for ringing or alerting:

void MyCallListener::OnStatusChanged(CallStatus status)

{

switch (status)

{

case RINGING:

playRingtone();

break;

case IN_CALL:

stopRinging();

break;

case ENDED:

case BUSY:

case CALL_ERROR:

case NOT_FOUND:

case TIMED_OUT:

updateUIForEndedCall();

break;

default:

break;

}

© 2018 CaféX | Confidential Page 113

}

CallStatus is an enumeration class that enumerates all of the possible states:

Status Code Meaning

UNINITIALIZED The Call object has been created but not initialized

SETUP Call is in process of being set up

ALERTING An incoming call is alerting (ringing) at the user’s end.

RINGING An outgoing call is ringing at the remote end

MEDIA_PENDING The call is connected, and waiting for media

IN_CALL The call is fully set up, including media

BUSY Dialed number is busy

NOT_FOUND Dialed number is unreachable or does not exist

TIMED_OUT The dialing operation timed out without a response from the dialed number

CALL_ERROR The call has errored. This may be because something (such as a media broker) was

unavailable, or because of network conditions, or for some other reason. More inform-

ation is not available.

ENDED The call has ended

The CallListener interface defines other notification functions that allow your application to detect call

quality changes and dial and call failures (see the Network Quality Callbacks section on page 119).

Adding Application Event Distribution

Application Event Distribution functionality is contained in the AED and Topic objects. There is also a

TopicListener object which receives information of changes which have been made to the topics.

In order to use Application Event Distribution, you must first obtain an AED object from the UC object:

acb::AEDPtr aed = uc->GetAED();

Initialization of the UC object is exactly the same as for voice and video calling (see the Initializing the UC

and Starting the Session section on page 108).

© 2018 CaféX | Confidential Page 114

Creating a Topic

Once you have obtained an AED object, you can create a topic.

acb::TopicPtr topic = aed->CreateTopic(name, listener);

or

acb::TopicPtr topic = aed->CreateTopic(name, expiry, listener);

The name is a std::string which uniquely identifies the topic on the server, and the expiry is a time in

minutes. If you create the topic with an expiry time, it will be automatically removed from the server after

it has been inactive for that time. When created without an expiry time (by the first method), the topic

exists indefinitely, and needs to be deleted explicitly (see the Disconnecting from a Topic section on

page 117).

The listener is an object which descends from the TopicListener object. It contains a number of call-

back methods which inform the application about things which happen on the topic.

Important: Either of these creates a client-side representation of a topic and automatically connects to it. If

the topic already exists on the server, it connects to that topic; if the topic does not already exist, it creates

it.

OnTopicConnected

After creating a topic, the listener should receive an OnTopicConnected callback (in case of failure, the

listener will receive an OnTopicNotConnected callback instead). The parameters to the callback are a

TopicPtr identifying the topic, and a TopicDataPtr. The TopicDataPtr points to a structure con-

taining all the existing data for the topic (if the topic is newly created, this is empty). The data on a topic

consists of name-value pairs, and you can either look for the value of a data item that you know will be

there:

const acb::TopicDataValue* const value = data->GetValue(name);

or call GetStart() to get a TopicDataIterator pointing at the beginning of the data, and so get all the

data values:

acb::TopicData::TopicDataIterator it = data->GetStart();

if (!it.isEnded())

{

do

{

std::string name = it.GetKey();

acb::TopicDataValue value = it.GetValue();

© 2018 CaféX | Confidential Page 115

} while (it.Next());

}

A TopicDataValue can contain one of a number types of data object (std::string, bool, int, or

double), and provides methods (GetAsString(), GetAsInt(), etc.) for retrieving the actual value; it

also provides a GetType() method which returns a std::type_info object. Currently, however, it will

always be a std::string.

Publishing Data to a Topic

Once the client application has connected to the topic, it can publish data on it. Data consists of name-

value pairs:

std::string name = "name";

std::string value = "value";

topic→SubmitData(key, value);

Having submitted the data, the listener receives either an OnTopicSubmitted or an

OnTopicNotSubmitted (in the case of failure) callback. Both the key and the value are a

std::string. In the case of a successful submission, there will also be an OnTopicUpdated callback

when the data is sent to all clients connected to the topic. The OnTopicSubmitted callback includes a

version parameter, enabling clients to know whether any OnTopicUpdate callback they receive refers

to data they have just submitted or not (if it does, the version parameters will be the same). For a newly

created data items, the version will be 0.

The client application can also change the value of an existing data item by calling SubmitData. In this

case, the callbacks (OnTopicSubmitted and OnTopicUpdated) include a version parameter greater

than 0.

OnTopicUpdated

The client receives the OnTopicUpdated callback when any client makes a change to a data item on a

topic (adding, deleting, or changing the value associated with it), and contains information about the

change:

OnTopicUpdated(acb::TopicPtr topic, std::string name, std::string value, int
version, bool deleted);

The topic, name, and value parameters are as detailed previously (the value parameter is the new

value); deleted will be true if the data item has been removed from the topic (see the Deleting Data

from a Topic section on the next page for details about deleting data). The version parameter is an

© 2018 CaféX | Confidential Page 116

integer which increases with every change made to the value of the data item. The client application can

ignore updates for data items if those updates have values earlier than the value it currently has for the

same data item.

Deleting Data from a Topic

The client can delete the name-value pair from the topic by calling acb::Topic::DeleteData

(std::string key). The client receives either an OnDataDeleted followed by an OnTopicUpdated

callback, or an OnDataNotDeleted callback (in the case of failure).

Sending a Message to a Topic

A client application can send a message to a topic, and have that message sent to all current subscribers to

the topic.

std::string message = "a message";

topic->SendMessage(message);

If the client successfully sends the message, the listener receives an OnTopicSent followed by an

OnMessageReceived callback, both containing the topic and the message; if it is not successful, the cli-

ent will receive an OnTopicNotSent callback containing the topic, the message which failed, and an

error message.

OnMessageReceived

The OnMessageReceived callback is received by all connected clients when any client connected to the

topic (including itself) successfully sends a message to the topic. The parameters include the topic and

the message itself (as a std::string).

Disconnecting from a Topic

The client application can disconnect from a topic:

topic->Disconnect();

or delete it altogether:

topic->Disconnect(true);

The optional parameter to the Disconnect method is a boolean which, if true, will cause the topic to be

deleted from the server (the default value is false). The listener will receive either an OnTopicDeleted

followed by an OnTopicDeletedRemotely callback, or an OnTopicNotDeleted callback. Apart from

© 2018 CaféX | Confidential Page 117

the topic which has been deleted, OnTopicDeleted includes a message parameter. The message is not

particularly helpful, and is probably best ignored. The OnTopicNotDeleted callback also includes an

error parameter (a std::string) which is more useful.

OnTopicDeletedRemotely

OnTopicDeletedRemotely is received by all clients connected to a topic when it is deleted from the

server, either as a result of any client calling Disconnect(true), or as a result of it expiring. The only

parameter it includes is the topic which has been deleted. Once a topic has been deleted, the client should

not call any of that topic's methods (which will fail in any case), and should consider itself unsubscribed

from that topic. If a topic with the same name is subsequently created, it is a new topic, and the client will

not be automatically subscribed to it.

Responding to Network Issues

As Fusion Client SDK is network-based, it is essential that the client application is made aware of any

loss of network connection. When a network connection is lost, the server uses SIP timers to determine

how long to keep the session alive before reallocating the relevant resources. Any application you develop

should make use of the available callbacks in the Fusion Client SDK API, and any other available tech-

nologies, to handle network failure scenarios.

To receive callbacks relating to network issues, the application must use the UCListener class.

Reacting to Network Loss

In the event of network connection problems, the SDK automatically tries to re-establish the connection. It

will make seven attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s. A call to

OnConnectionRetry on the UCListener precedes each of these attempts. The callback supplies the

attempt number (as a uint8_t) and the delay in seconds before the next attempt (as a uint16_t) in its

two parameters.

When all reconnection attempts are exhausted, the UCListener receives the OnConnectionLost call-

back, and the retries stop. At this point the client application should assume that the session is now

invalid. The client application should then log out of the server and reconnect via the web app to get a new

session, as described in the Creating the Session section on page 15.

© 2018 CaféX | Confidential Page 118

If any of the reconnection attempts are successful, the UCListener receives the

OnConnectionReestablished callback.

Of these three notifications, the application only needs to implement OnConnectionLost(). The other

two are optional.

Note: The retry intervals, and the number of retries attempted by the SDK are subject to change in future

releases. Do not rely on the exact values given above.

Network Quality Callbacks

The application can implement the OnInboundQualityChanged method of the CallListener to

receive notification of changes in the quality of the network during a call:

void MyCallListener::OnInboundQualityChanged(int inboundQuality)

{

// Show indication of quality

}

The inboundQuality parameter is a number between 0 and 100, where 100 indicates perfect quality.

The application might choose to show a bar in the UI, the length of the bar indicating the quality of the con-

nection.

The SDK starts collecting metrics as soon as it receives the remote media stream. It does this every 5s, so

the first quality callback fires roughly 5s after this remote media stream callback has fired.

The callback then fires whenever a different quality value is calculated; so if the quality is perfect then

there will be an initial quality callback with a value of 100 (after 5s), and then no further callback until the

quality degrades.

Note: The CallListener class provides a skeleton implementation (which does nothing) of

OnInboundQualityChanged, so there is no need for the application to implement it.

© 2018 CaféX | Confidential Page 119

Creating a Windows .NET Client Application

Fusion Client SDK includes a wrapper for the native Windows library that allows you to develop Win-

dows applications in languages that use the .NET Framework, such as C# or VB.NET.

The wrapper generally follows the native Windows SDK library, provides similar functionality, and works

with similar objects. It departs from the FCSDK for Windows where doing so works better with the .NET

Framework. Managed versions of the classes provided by the wrapper are contained within the namespace

FCSDKCLR (FCSDK Common Language Runtime) and are prefixed by CLI_ to indicate that they use the

Common Language Infrastructure.

Interfaces are prefixed by ICLI_ in keeping with conventional naming of interfaces used by the .NET frame-

work.

The examples are expressed in the C# language.

Setting up a Project

Note: Before setting up a project for a client application, make sure you have created a Web Application to

authenticate and authorize users, and to create and destroy sessions for them. See the Creating the Web

Application section on page 14.

This section provides guidance on setting up a project using Visual Studio 2013 that imports the CSDK-

CLR wrapper library.

1. Create a new .NET project (typically a Visual C# Windows Forms application or a Visual Basic Win-

dows Forms application).

2. Within Solution Explorer (use the View menu to display it if it is not shown), open the project node, then

open its References node.

3. Right-click on the References node and click on Add reference....

4. The SDK contains a file CSDK-CLR.dll. Click on the Browse... button, browse to the file and click on

Add.

© 2018 CaféX | Confidential Page 120

Initializing the CLI_UC and Starting the Session

The application initially accesses the API through a single object, CLI_UC. To set up all the functionality to

which the user has access, the application needs to obtain a session ID from the Web Application (see the

Creating the Web Application section on page 14), and initialize the CLI_UC object using it. Once it

has received the Session ID, the client application must create the CLI_UC object, then call its

StartSession method:

public sealed class UCOwner : FCSDKCLR.ICLI_UCListener

{

private FCSDKCLR.CLI_UC mUC;

public void MakeTheCliUcObject(String sessionID, String stunServers)

{

mUC = new FCSDKCLR.CLI_UC(sessionID, stunServers, this);

mUC.StartSession();

}

/// The class needs to implement ICLI_UCListener

/// so that it can act upon its callbacks.

}

If you use a different object that implements ICLI_UCListener to provide the callbacks, then you should

substitute a reference to that object for this in the call to the CLI_UC constructor.

Note that you must dispose of the CLI_UC object, in common with many of the objects provided by the CLI

wrapper, when it is no longer useful. Do this by calling its Dispose method:

mUC.Dispose();

The object that implements the ICLI_UCListener interface must provide implementations for the call-

backs:

void OnSessionStarted();

void OnSessionNotStarted();

The SDK calls one of these two functions to indicate whether starting the session has succeeded or failed.

The other function callbacks in the interface are self-explanatory (for their use, see the Responding to

Network Issues section on page 131):

void OnConnectionRetry(byte attemptNumber, ushort delayInSeconds);

void onConnectivityLost();

void OnConnectionReestablished();

void OnUnknownWebsocketMessage(string s);

© 2018 CaféX | Confidential Page 121

Adding Voice and Video

Once the application has created the CLI_UC object, it can retrieve the CLI_Phone object from it, and use

it to make or receive calls, which are represented by CLI_Call objects. Each of the CLI_UC, CLI_Phone

and CLI_Call objects have corresponding listener interfaces that the application can implement in order

to receive error notifications and other events.

Adding a Preview Window before a Call is made

If you want to add a preview window (a window which displays the video which is being sent to the other

endpoint) before a call is established, you can call the Phone.SetPreviewViewName method. An appro-

priate time to do this is in the OnSessionStarted callback:

public void OnSessionStarted()

{

mUC.GetPhone().SetPreviewViewName("local");

};

Making a Call

Once you have created the session, you can start making calls. Create a CLI_Call object from the CLI_

Phone object:

CLI_Call call = mUC.GetPhone().CreateCall("1234",

CLI_MediaDirection.SEND_AND_RECEIVE,

CLI_MediaDirection.SEND_AND_RECEIVE, this);

In this example, 1234 is the number to dial, the two CLI_MediaDirection parameters indicate that we

want the call to be an audio and video call respectively, and the final parameter registers this as the

ICLI_CallListener.

Note: There is an alternative version of CreateCall, which does not take the final ICLI_

CallListener parameter. If you use this version, you will need to call SetListener on the resulting

CLI_Call object in order to receive notifications about the call.

The CreateCall function returns the newly created call as a CLI_Call object, but the application should

not use it until the ICLI_CallListener receives an asynchronous notification indicating that the call

creation has succeeded.

You can change the values of the media direction parameters to make the call audio only or video only.

They must be members of the CLI_MediaDirection enumeration:

© 2018 CaféX | Confidential Page 122

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

Note: The older form of CreateCall, which took two boolean values, is now deprecated.

Receiving a Call

FCSDK will invoke the ICLI_PhoneListener object that you registered with the CLI_Phone object

when an incoming call is received:

public void OnIncomingCall(CLI_Call call)

{

call.Answer(MediaDirection.SEND_AND_RECEIVE, MediaDirection.SEND_AND_
RECEIVE);

}

In this example, the application auto-answers the call; most applications will notify the user before invok-

ing either call.Answer() to accept, or call.End() to reject, the call.

The two parameters to the Answer method indicate whether to answer the call with audio and video

respectively. They are members of the CLI_MediaDirection enumeration:

n NONE

n SEND_ONLY

n RECEIVE_ONLY

n SEND_AND_RECEIVE

Note: The older form of Answer, which took two boolean values, is now deprecated.

Displaying Video

Your application can display both video received from the remote peer, and a preview of the

locally-captured video that it sends to the remote peer.

The SDK uses named pipes internally to route frame information from a receiving (producer) thread to a

consuming thread, These activities are separated within the SDK, and you need to connect them to allow

video to be displayed.

© 2018 CaféX | Confidential Page 123

The CLI_Phone object has a method, SetPreviewViewName (associated with local video), and the CLI_

Call object has a method, SetVideoViewName (associated with remote video). Each method takes a

string which is used to create the name of the pipe. File naming conventions should be followed when

assigning this name. This prepares the sources of the pipes.

In order to display the video, you need to extend CLI_ImageDataPipe. The constructor of CLI_

ImageDataPipe takes a string whose name needs to match the name provided to

SetPreviewViewName or SetVideoViewName. You must override the method SendImageToView,

which returns void and takes no arguments. FCSDK calls it whenever it receives a new frame from the

pipe and makes it available for painting. The overridden method must obtain the frame and render it.

To obtain the frame, call the method GetImageData, which returns a CLI_VideoViewImageData

object that contains the image data. You can render the frame onto a CLI_VideoView object. The CLI_

VideoView has a method, SetImageData, that takes the CLI_VideoViewImageData object that came

from GetImageData as its argument; it associates the image data with the CLIVideoView object. It also

has a method, Paint, which renders the associated frame data - the window's onPaint method should

call it, passing in its PaintEventArgs object.

When each frame is ready to display, the CLI_VideoView calls an ICLI_ViewRefresher object's

RefreshViewFunc. You can associate an ICLI_ViewRefresher with the CLI_VideoView by calling

its SetRefreshViewFunc method. The usual behavior of the RefreshViewFunc method is to invalidate

the region of the client area which renders the video.

Muting Local Audio and Video Streams

Muting the local streams stops audio or video from being sent to the remote party. Audio and video

received from the remote party is not affected.

The following example shows an application muting both audio and video in response to a mute button

being pressed in the user interface:

public void MyUIController.MuteButtonPressed()

{

call.EnableLocalAudio(false);

call.EnableLocalVideo(false);

}

© 2018 CaféX | Confidential Page 124

You can also mute the audio and video streams as soon as the call is answered by supplying RECEIVE_

ONLY as the media direction:

call.Answer(CLI_MediaDirection.RECEIVE_ONLY, CLI_MediaDirection.RECEIVE_
ONLY);

Holding and Resuming a Call

Your application can place a call on hold, and subsequently resume the call. While a call is on hold, no

audio or video is played to either end of the call. Only the party that placed the call on hold can resume it:

public void MyUIController.HoldButtonPressed()

{

call.Hold();

}

public void MyUIController.ResumeButtonPressed()

{

call.Resume();

}

Sending DTMF Tones

Your application can send DTMF tones on a call by using the SendDTMF method provided by the CLI_

Call object. It can be used as follows:

call.SendDTMF(“#123*”, true);

The example sends five tones sequentially. To send a single tone, use a single-character string.

The boolean parameter indicates whether you want the tones to also be played locally, so that the user of

your application can hear them.

Valid values in the string parameter are those conventionally used to denote DTMF tones:

0123456789#*. A comma character inserts a two-second pause into a sequence of tones.

Handling Multiple Calls

Applications developed with the Fusion Client SDK for .NET do not support multiple simultaneous calls.

Setting Video Resolution

Your application can configure both the resolution and frame rate of the video it sends to the remote party

in a video call. You can set the video resolution on the CLI_Phone object:

phone.SetPreferredCaptureResolution(CLI_VideoCaptureResolution.RESOLUTION_
1280x720);

© 2018 CaféX | Confidential Page 125

Available options at the time of writing are:

n RESOLUTION_AUTO

n RESOLUTION_352x288

n RESOLUTION_640x480

n RESOLUTION_1280x720

You can also set the frame rate:

phone.SetPreferredCaptureFrameRate(20);

Note: Changes to the video resolution and frame rate apply only to new calls. Calling these APIs while a

call is in progress has no effect.

Monitoring the State of a Call

During call setup, the call transitions through several states, from the initial setup to being connected with

media available (or failure). You can monitor these states using the ICLI_CallListener object using

the method OnStatusChanged(CLI_CallStatus newStatus). CLI_CallStatus is an enumeration

with the following values:

Status Code Meaning

UNINITIALIZED The Call object has been created but not initialized

SETUP Call is in process of being set up

ALERTING An incoming call is alerting (ringing) at the user’s end.

RINGING An outgoing call is ringing at the remote end

MEDIA_PENDING The call is connected, and waiting for media

IN_CALL The call is fully set up, including media

BUSY Dialed number is busy

NOT_FOUND Dialed number is unreachable or does not exist

TIMED_OUT The dialing operation timed out without a response from the dialed number

CALL_ERROR The call has errored. This may be because something (such as a media broker) was

unavailable, or because of network conditions, or for some other reason. More inform-

© 2018 CaféX | Confidential Page 126

Status Code Meaning

ation is not available.

ENDED The call has ended

There are also other callback functions that allow your application to detect call quality changes

(OnInboundQualityChange which provides a number from 0 to 100 representing the call quality; 100 is

best) and dial or call failures (OnDialFailed and OnCallFailed).

Adding Application Event Distribution

Application Event Distribution is contained in the CLI_AED and CLI_Topic objects. Asynchronous noti-

fication of events occurs by callback to any class that implements the ICLI_TopicListener interface.

In order to use Application Event Distribution, you must first obtain a CLI_AED object from the CLI_UC

object:

CLI_AED aed = uc.GetAED();

Initialization of the CLI_UC object is exactly the same as for voice and video calling (see the Initializing

the CLI_UC and Starting the Session section on page 121).

Creating a Topic

You can create a topic using the CreateTopic API provided by the CLI_AED object:

aed.CreateTopic(name, listener);

or

aed.CreateTopic(name, expiry, listener);

The name argument is a string that uniquely identifies the topic on the server. If you use the form of the

API that includes an expiry argument, the expiry period is in minutes. If the topic has an expiry time, it

will be removed from the server after it has been inactive for that period of time. When created without an

expiry time (by the first method), the topic exists indefinitely, and the application must delete it explicitly

(see the Disconnecting from a Topic section on page 130).

The listener is an object that implements ICLI_TopicListener, the methods of which provide noti-

fication to your application of events that concern the topic.

© 2018 CaféX | Confidential Page 127

Important: Either of these creates a client-side representation of a topic and automatically connects to it. If

the topic already exists on the server, it connects to that topic; if the topic does not already exist, it creates

it.

OnTopicConnected

After creating a topic, the listener should receive an OnTopicConnected callback (in case of failure, the

listener receives an OnTopicNotConnected callback instead). The arguments to the callback are a CLI_

Topic identifying the topic and a CLI_TopicData that contains all existing data for the topic.

The data contained within a topic consists of key-value pairs. If you know the name of a key for which you

want the associated value, you can retrieve it as follows:

CLI_TopicDataValue value = topicData.GetValue(name);

where the name argument is a string containing the key name.

You can also iterate through the keys with a simple foreach loop:

foreach (CLI_TopicDataElement element in topicData)

{

string key = element.key;

CLI_TopicDataValue value = element.value;

int version = element.version;

bool deleted = element.deleted;

}

A method that is probably most useful during testing and debugging is CLI_

TopicDataElement.ToString which in the case of CLI_TopicDataElement objects is overridden to

provide a readable representation of the object state.

CLI_TopicDataValue wraps an acb::TopicDataValue object. It contains at most one value that is a

string, a double, an int, or a bool. If it doesn't contain a value, it represents an empty value. Note

that only string values can be set using the current API.

The type is returned in string form by using CLI_TopicDataValue.GetType() which returns a

string identifying the type. You can obtain the value using GetAsString(defaultValue),

GetAsBool(), GetAsInt(defaultValue) or GetAsDouble(defaultValue) and if the value does

not exist, the default value is returned (or false in the case of GetAsBool()). You can also call

GetAsInt() or GetAsDouble() in which case the default value returned is 0.

© 2018 CaféX | Confidential Page 128

Publishing Data to a Topic

Once the client application has connected to a topic, it can publish data to the topic. Data consists of key-

value pairs.

string key = “name”;

string value = “value”;

topic.SubmitData(key, value);

Having submitted the data, the listener receives either an OnTopicSubmitted or an

OnTopicNotSubmitted (in the case of failure) callback. Both the key and the value are values of type

string. In the case of a successful submission, an OnTopicUpdated callback is also triggered when the

data is sent to all clients connected to the topic; see the OnTopicUpdated section below for details.

The client application can also change the value of an existing data item by calling SubmitData. In this

case, the callbacks (OnTopicSubmitted and OnTopicUpdated) include a version parameter greater

than 0.

OnTopicUpdated

The client receives the OnTopicUpdated callback whenever any client makes a change to a data item on

a topic (adding, deleting or changing the associated value) and contains information about the change:

OnTopicUpdated(CLI_Topic topic, string key, string value, int version, bool
deleted);

The topic, name, and value parameters are as detailed previously. The version parameter enables cli-

ents to know, when they receive this callback, whether it refers to data they have just submitted (if it does,

the version parameters are equal). For a newly-created data item, the version is 0, and it is incremented

upon every change.

Deleting Data from a Topic

The client can delete a key-value pair from a topic by calling CLI_Topic.DeleteData(“keyName”).

The client receives either an OnDataDeleted callback followed by an OnTopicUpdated callback, or an

OnDataNotDeleted callback (in the case of failure).

Sending a Message to a Topic

A client application can send a message to a topic and have that message sent to all current subscribers to

the topic.

topic.SendMessage(“message”);

© 2018 CaféX | Confidential Page 129

If it successfully sends the message, the listener receives an OnTopicSent callback followed by an

OnMessageReceived callback, both containing the topic and the message. If it is not successful, the cli-

ent receives an OnTopicNotSent callback containing the topic, the message which failed, and an

error message.

OnMessageReceived

The OnMessageReceived callback is received by all connected clients when any client connected to the

topic (including itself) successfully sends a message to the topic. The arguments include the topic and the

message itself (as a string).

Disconnecting from a Topic

The client application can disconnect from a topic:

topic.Disconnect();

or delete it altogether:

topic.Disconnect(true);

If the Disconnect method is called with the boolean argument set to true, the topic is deleted from the

server. Calling Disconnect without an argument is equivalent to calling Disconnect(false), and in

either case the topic is not deleted.

If the application attempts to delete the topic from the server, the listener receives an OnTopicDeleted

callback followed by either an OnTopicDeletedRemotely callback if successful, or an

OnTopicNotDeleted callback otherwise. OnTopicDeleted includes a message string as one of its argu-

ments, which is not likely to be useful. OnTopicNotDeleted includes a message string that provides

information about the error.

OnTopicDeletedRemotely

OnTopicDeletedRemotely is received by all clients connected to the topic when it is deleted from the

server, either as a result of any client calling Disconnect(true), or because it expires. It passes the

CLI_Topic which has been deleted. Once a topic has been deleted, the client should not call any of the

topic methods and should consider itself unsubscribed from that topic. If a topic with the same name is sub-

sequently created, it is a new topic, and the client is not automatically subscribed to it.

© 2018 CaféX | Confidential Page 130

Responding to Network Issues

As Fusion Client SDK is network-based, it is essential that the client application is made aware of any

loss of network connection. When a network connection is lost, the server uses SIP timers to determine

how long to keep the session alive before reallocating the relevant resources. Any application you develop

should make use of the available callbacks in the Fusion Client SDK API, and any other available tech-

nologies, to handle network failure scenarios.

To receive callbacks relating to network issues, the application must implement the ICLI_UCListener

interface.

Reacting to Network Loss

In the event of network connection problems, the SDK automatically tries to re-establish the connection. It

will make seven attempts at the following intervals: 0.5s, 1s, 2s, 4s, 4s, 4s, 4s. A call to

OnConnectionRetry on the ICLI_UCListener precedes each of these attempts. The callback supplies

the attempt number (as a System::Byte) and the delay in seconds before the next attempt (as a

System::UInt16) in its two parameters.

When all reconnection attempts are exhausted, the ICLI_UCListener receives the OnConnectionLost

callback, and the retries stop. At this point the client application should assume that the session is now

invalid. The client application should then log out of the server and reconnect via the web app to get a new

session, as described in the Creating the Session section on page 15.

If any of the reconnection attempts are successful, the ICLI_UCListener receives the

OnConnectionReestablished callback.

Note: The retry intervals, and the number of retries attempted by the SDK are subject to change in future

releases. Do not rely on the exact values quoted above.

Network Quality Callbacks

The application can implement the OnInboundQualityChange method of the ICLI_CallListener

interface to receive callbacks on the quality of the network during a call:

public void OnInboundQualityChange(int inboundQuality)

{

// Show indication of quality

}

© 2018 CaféX | Confidential Page 131

The inboundQuality parameter is a number between 0 and 100, where 100 indicates perfect quality.

The application might choose to show a bar in the UI, the length of the bar indicating the quality of the con-

nection.

The SDK starts collecting metrics as soon as it receives the remote media stream. It does this every 5s, so

the first quality callback fires roughly 5s after this remote media stream callback has fired.

The callback then fires whenever a different quality value is calculated; so if the quality is perfect then

there will be an initial quality callback with a value of 100 (after 5s), and then no further callback until the

quality degrades.

© 2018 CaféX | Confidential Page 132

Appendix: Error Codes

Some of the APIs give access to an error code from the Gateway. These are:

Code Meaning

NOMATCH The Offer, Answer, or Offer Request is not for a new session and does not correspond

to an existing session

REFUSED The initial Offer was refused

BUSY There is already an Offer or Offer Request pending, so this Offer cannot be handled

TIMEOUT The outbound request failed because of a SIP timeout

NOTFOUND The outbound request failed because the callee could not be found

FAILED The request failed for some other reason.

© 2018 CaféX | Confidential Page 133

	Documentation Set
	Related Documentation

	Creating the Web Application
	Communication with the Client
	Authenticating the User
	Creating the Session
	Examples
	Voice and Video Calling
	Voice and Video Calling with URL
	AED Only
	Using the UUI

	JSON Response

	Ending the Session

	Creating a Browser Client Application
	Setting up a Project
	Initializing the SDK
	Checking Browser Compatibility

	Adding Voice and Video
	Adding a Preview Window
	Making a Call
	Receiving a Call
	Enabling Local Media
	Adding a Stream
	The Size of the Video Window

	Ending a Call
	Muting the Local Audio and Video Streams
	Holding and Resuming a Call
	Sending DTMF Tones
	Handling Multiple Calls
	Setting Video Resolution
	Enumerating Possible Resolutions
	Setting the Resolution
	Setting an Arbitrary Video Resolution
	Setting the Frame Rate

	Input Device Switching
	Getting the Input Devices

	Handling User Media Issues
	Monitoring Call State

	Adding Application Event Distribution
	Creating a Topic
	Subscribing to a Topic
	Unsubscribing from a Topic
	Publishing Data to a Topic
	Deleting Data from a Topic
	Sending a Message to a Topic

	Adding Floor Control
	Requesting the Floor
	The Floor Request is Accepted
	The Floor Request is Rejected

	Releasing the Floor
	Canceling a Floor Request
	The Floor is Taken from the Client
	Another User is Granted the Floor
	Another User Releases the Floor
	A Simple Floor Control Client Program
	Floor Control and HA Cluster Failover

	Ending the Session
	Responding to Network Issues
	Reacting to Network Loss
	Network Quality Callbacks

	Creating an iOS Client Application
	Setting up a Project
	iOS 9 and Xcode 7

	Initializing the ACBUC Object
	Adding Voice and Video
	Requesting Permission to use the Microphone and Camera
	Making a Call
	Receiving a Call
	Receiving Calls when the Client is in Background or Suspended Mode

	Video Views and Preview Views
	Ending a Call
	Muting the Local Audio and Video Streams
	Holding and Resuming a Call
	DTMF Tones
	Handling Multiple Calls
	Setting Video Resolution
	Enumerating the Possible Resolutions
	Setting the Resolution
	Setting the Frame Rate

	Dial Failures
	Handling Device Rotation
	Switching between the Front and Back cameras
	Application Background Mode
	Monitoring the State of a Call

	Adding Application Event Distribution
	Creating and Connecting to a Topic
	didConnectWithData

	Disconnecting from a Topic
	topicDidDelete

	Publishing Data to a Topic
	didUpdateWithKey

	Deleting Data from a Topic
	Sending a Message to a Topic
	didReceiveMessage

	Threading
	Self-Signed Certificates
	Testing IPv6
	Bluetooth Support
	Starting and Stopping ACBAudioDeviceManager
	Setting the Preferred Device
	Setting the Default Device
	Listing Available Devices

	Responding to Network Issues
	Reacting to Network Loss
	Reacting to Network Changes
	Network Quality Callbacks

	Creating an Android Client Application
	Setting up a Project
	Creating the UC Object
	Adding Voice and Video
	Making a Call
	Receiving a Call
	Video Views and Preview Views
	Ending a Call
	Muting the Local Audio and Video Streams
	Holding and Resuming a Call
	Sending DTMF Tones
	Handling Multiple Calls
	Setting Video Resolution
	Enumerating the Possible Resolutions
	Setting the Resolution
	Setting the Frame Rate

	Handling Device Rotation
	Switching between the Front and Back Cameras
	Application Background Mode
	Monitoring the State of a Call

	Adding Application Event Distribution
	Creating and Connecting to a Topic
	Topic Expiry
	onTopicConnected

	Unsubscribing from a Topic
	onTopicDeletedRemotely

	Publishing Data to a Topic
	onTopicUpdated

	Deleting Data from a Topic
	Sending a Message to a Topic
	onMessageReceived

	Self-Signed Certificates
	Bluetooth Support
	Starting and Stopping AudioDeviceManager
	Using the Listener
	Setting the Audio Device
	Setting the Default Device
	Listing Available Devices

	Responding to Network Issues
	Reacting to Network Loss
	Reacting to Network Changes
	Network Quality Callbacks

	Creating an OSX Client Application
	Setting up a Project
	Initializing the ACBUC Object
	Adding Voice
	Making a Call
	Receiving a Call
	Video Views and Preview Views
	Muting the Local Audio Stream
	Holding and Resuming a Call
	DTMF Tones
	Handling Multiple Calls
	Monitoring the State of a Call

	Threading
	Self-Signed Certificates
	Responding to Network Issues
	Reacting to Network Loss
	Reacting to Network Changes

	Creating a Windows Client Application
	Setting up a Project
	Initializing the UC and Starting the Session
	Adding Voice and Video
	Adding a Preview Window before a Call is made
	Making a Call
	Receiving a Call
	Displaying Video
	Muting Local Audio and Video Streams
	Holding and Resuming a Call
	Sending DTMF Tones
	Handling Multiple Calls
	Setting Video Resolution
	Monitoring the State of a Call

	Adding Application Event Distribution
	Creating a Topic
	OnTopicConnected

	Publishing Data to a Topic
	OnTopicUpdated

	Deleting Data from a Topic
	Sending a Message to a Topic
	OnMessageReceived

	Disconnecting from a Topic
	OnTopicDeletedRemotely

	Responding to Network Issues
	Reacting to Network Loss
	Network Quality Callbacks

	Creating a Windows .NET Client Application
	Setting up a Project
	Initializing the CLI_UC and Starting the Session
	Adding Voice and Video
	Adding a Preview Window before a Call is made
	Making a Call
	Receiving a Call
	Displaying Video
	Muting Local Audio and Video Streams
	Holding and Resuming a Call
	Sending DTMF Tones
	Handling Multiple Calls
	Setting Video Resolution
	Monitoring the State of a Call

	Adding Application Event Distribution
	Creating a Topic
	OnTopicConnected

	Publishing Data to a Topic
	OnTopicUpdated

	Deleting Data from a Topic
	Sending a Message to a Topic
	OnMessageReceived

	Disconnecting from a Topic
	OnTopicDeletedRemotely

	Responding to Network Issues
	Reacting to Network Loss
	Network Quality Callbacks

	Appendix: Error Codes

